ﻻ يوجد ملخص باللغة العربية
After pioneering gaseous detectors of single photon for RICH applications using CsI solid state photocathodes in MWPCs within the RD26 collaboration and by the constructions for the RICH detector of the COMPASS experiment at CERN SPS, in 2016 we have upgraded COMPASS RICH by novel gaseous photon detectors based on MPGD technology. Four novel photon detectors, covering a total active area of 1.5~m$^2$, have been installed in order to cope with the challenging efficiency and stability requirements of the COMPASS physics programme. These detectors are the first application in an experiment of MPGD-based single photon detectors. All aspects of the upgrade are presented, including engineering, mass production, quality assessment and performance. Perspectives for further developments in the field of gaseous single photon detectors are also presented.
After pioneering gaseous detectors of single photon for RICH applications using CsI solid state photocathodes in MWPCs within the RD26 collaboration and by the constructions for the RICH detector of the COMPASS experiment at CERN SPS, in 2016 we have
A Set of new MPGD-based Photon Detectors is being built for the upgrade of COMPASS RICH-1. The detectors cover a total active area of 1.4 m$^2$ and are based on a hybrid architecture consisting of two THGEM layers and a Micromegas. A CsI film on one
COMPASS is a fixed target experiment at CERN SPS aimed to study hadron structure and spectroscopy. Hadron identification in the momentum range between $3$ and $55 GeV/c$ is provided by a large gaseous Ring Imaging Cherenkov Counter, RICH-1. To cope w
The architecture of the novel MPGD-based photon detectors of COMPASS RICH-1 consists in a large-size hybrid MPGD multilayer layout combining two layers of Thick-GEMs and a bulk resistive MICROMEGAS. Concerning biasing voltage, the Thick-GEMs are segm
The novel MPGD-based photon detectors of COMPASS RICH-1 consist of large-size hybrid MPGDs with multi-layer architecture including two layers of Thick-GEMs and a bulk resistive MicroMegas. The top surface of the first THGEM is coated with a CsI film