ﻻ يوجد ملخص باللغة العربية
The structural and electrical characterizations of mechanically-milled (MM) amorphous fast ionic conductors (a-FICs), viz. xAgI (100-x)[0.67 Ag_2 O-0.33V_2O_5] (x = 40, 50, 55 and 70) have been reported. The amorphisation is restricted only to the compositions which are well within the glass forming region and all samples are found to be highly agglomerated and X-ray amorphous in nature. The frequency dependent ac conductivity, sigma(omega), of the amorphous samples investigated in the frequency range 5Hz -13 MHz and temperature range 100- 350 K shows a dc conductivity regime at low frequencies and a dispersive regime at higher frequencies. The spectra can be described by the Jonscher power law (JPL), simga(omega) = sigma_dc +A(T) omega_n. However, the values sigma_dc (T) and A(T) both show two distinct Arrhenius regions and n (< 1) is found to be temperature dependent, i.e., decreasing with increasing temperature.
New emerging disciplines such as Nanoionics and Iontronics are dealing with the exploitation of mesoscopic size effects in materials, which become visible (if not predominant) when downsizing the system to the nanoscale. Driven by the worldwide stand
Ferroelectrics that are also ionic conductors offer possibilities for novel applications with high tunability, especially if the same atomic species causes both phenomena. In particular, at temperatures just below the Curie temperature, polarized sta
Ion assisted deposition (IAD) has been investigated for the growth of GaN, and the resulting films studied by x-ray diffraction and absorption spectroscopy and by transmission electron microscopy. IAD grown stoichiometric GaN consists of random-stack
We report on density-functional-based tight-binding (DFTB) simulations of a series of amorphous arsenic sulfide models. In addition to the charged coordination defects previously proposed to exist in chalcogenide glasses, a novel defect pair, [As4]--
Solid-state ionic conduction is a key enabler of electrochemical energy storage and conversion. The mechanistic connections between material processing, defect chemistry, transport dynamics, and practical performance are of considerable importance, b