ﻻ يوجد ملخص باللغة العربية
We revisit the tidal stability of extrasolar systems harboring a transiting planet and demonstrate that, independently of any tidal model, none but one (HAT-P-2b) of these planets has a tidal equilibrium state, which implies ultimately a collision of these objects with their host star. Consequently, conventional circularization and synchronization timescales cannot be defined because the corresponding states do not represent the endpoint of the tidal evolution. Using numerical simulations of the coupled tidal equations for the spin and orbital parameters of each transiting planetary system, we confirm these predictions and show that the orbital eccentricity and the stellar obliquity do not follow the usually assumed exponential relaxation but instead decrease significantly, reaching eventually a zero value, only during the final runaway merging of the planet with the star. The only characteristic evolution timescale of {it all} rotational and orbital parameters is the lifetime of the system, which crucially depends on the magnitude of tidal dissipation within the star. These results imply that the nearly circular orbits of transiting planets and the alignment between the stellar spin axis and the planetary orbit are unlikely to be due to tidal dissipation. Other dissipative mechanisms, for instance interactions with the protoplanetary disk, must be invoked to explain these properties.
We show that a consistent fit to observed secondary eclipse data for several strongly irradiated transiting planets demands a temperature inversion (stratosphere) at altitude. Such a thermal inversion significantly influences the planet/star contrast
We report the discovery of four relatively massive (2-7MJ) transiting extrasolar planets. HAT-P-20b orbits a V=11.339 K3 dwarf star with a period P=2.875317+/-0.000004d. The host star has a mass of 0.760+/-0.03 Msun, radius of 0.690+/-0.02 Rsun, Teff
Planet-planet scattering best explains the eccentricity distribution of extrasolar giant planets. Past literature showed that the orbits of planets evolve due to planet-planet scattering. This work studies the spin evolution of planets in planet-plan
We report the discovery of three extrasolar planets that transit their moderately bright (Vmag = 12-13) host stars. WASP-44b is a 0.89-MJup planet in a 2.42-day orbit around a G8V star. WASP-45b is a 1.03-MJup planet which passes in front of the limb
We present new radial velocity measurements of eight stars secured with the spectrograph SOPHIE at the 193-cm telescope of the Haute-Provence Observatory allowing the detection and characterization of new giant extrasolar planets. The host stars are