ﻻ يوجد ملخص باللغة العربية
Planet-planet scattering best explains the eccentricity distribution of extrasolar giant planets. Past literature showed that the orbits of planets evolve due to planet-planet scattering. This work studies the spin evolution of planets in planet-planet scattering in 2-planet systems. Spin can evolve dramatically due to spin-orbit coupling made possible by the evolving spin and orbital precession during the planet-planet scattering phase. The main source of torque to planet spin is the stellar torque, and the total planet-plane torque contribution is negligible. As a consequence of the evolution of the spin, planets can end up with significant obliquity (the angle between a planets own orbit normal and spin axis) like planets in our Solar System.
We have investigated i) the formation of gravitationally bounded pairs of gas-giant planets (which we call binary planets) from capturing each other through planet-planet dynamical tide during their close encounters and ii) the following long-term or
Wide-orbit exoplanets are starting to be detected, and planetary formation models are under development to understand their properties. We propose a population of Oort planets around other stars, forming by a mechanism analogous to how the Solar Syst
Gas giants orbiting interior to the ice line are thought to have been displaced from their formation locations by processes that remain debated. Here we uncover several new metallicity trends, which together may indicate that two competing mechanisms
The spin-rotation of a planet arises from the accretion of angular momentum during its formation, but the details of this process are still unclear. In the solar system, the equatorial rotation velocities and spin angular momentum of the planets show
We propose a pebble-driven planet formation scenario to form giant planets with high multiplicity and large orbital distances in the early gas disk phase. We perform N-body simulations to investigate the growth and migration of low-mass protoplanets