ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave Dielectric Heating of Drops in Microfluidic Devices

87   0   0.0 ( 0 )
 نشر من قبل Naomi Brave
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has a large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picoliter drop of water and this enables very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperatures as large as 30 degrees C above the base temperature of the microfluidic device. Many common biological and chemical applications require rapid and local control of temperature, such as PCR amplification of DNA, and can benefit from this new technique.



قيم البحث

اقرأ أيضاً

Spatial control of wettability is key to many applications of microfluidic devices, ranging from double emulsion generation to localized cell adhesion. A number of techniques, often based on masking, have been developed to produce spatially-resolved wettability patterns at the surface of poly(dimethylsiloxane) (PDMS) elastomers. A major impediment they face is the natural hydrophobic recovery of PDMS: hydrophilized PDMS surfaces tend to return to hydrophobicity with time, mainly because of diffusion of low molecular weight silicone species to the surface. Instead of trying to avoid this phenomenon, we propose in this work to take advantage of hydrophobic recovery to modulate spatially the surface wettability of PDMS. Because temperature speeds up the rate of hydrophobic recovery, we show that space-resolved hydrophobic patterns can be produced by locally heating a plasma-hydrophilized PDMS surface with microresistors. Importantly, local wettability is quantified in microchannels using a fluorescent probe. This thermo-patterning technique provides a simple route to in situ wettability patterning in closed PDMS chips, without requiring further surface chemistry.
We investigate the migration of particles of different geometrical shapes and sizes in a scaled-up model of a gravity-driven deterministic lateral displacement (g-DLD) device. Specifically, particles move through a square array of cylindrical posts a s they settle under the action of gravity. We performed experiments that cover a broad range of orientations of the driving force (gravity) with respect to the columns (or rows) in the square array of posts. We observe that as the forcing angle increases particles initially locked to move parallel to the columns in the array begin to move across the columns of obstacles and migrate at angles different from zero. We measure the probability that a particle would move across a column of obstacles, and define the critical angle {theta}c as the forcing angle at which this probability is 1/2. We show that critical angle depends both on particle size and shape, thus enabling both size- and shape-based separations. Finally, we show that using the diameter of the inscribed sphere as the characteristic size of the particles the corresponding critical angle becomes independent of particle shape and the relationship between them is linear. This linear and possibly universal behavior of the critical angle as a function of the diameter of the inscribed sphere could provide guidance in the design and optimization of g-DLD devices used for shape-based separation.
190 - M. Caraglio , A. Imparato 2014
Protein machines often exhibit long range interplay between different sites in order to achieve their biological tasks. We investigate and characterize the non--linear energy localization and the basic mechanisms of energy transfer in protein devices . By studying two different model protein machines, with different biological functions, we show that genuinely non--linear phenomena are responsible for energy transport between the different machine sites involved in the biological functions. The energy transfer turns out to be extremely efficient from an energetic point of view: by changing the energy initially provided to the model device, we identify a well defined range of energies where the time for the energy transport to occur is minimal and the amount of transferred energy is maximum. Furthermore, by introducing an implicit solvent, we show that the energy is localized on the internal residues of the protein structure, thus minimizing the dissipation.
An electrokinetically-driven deterministic lateral displacement (e-DLD) device is proposed for the continuous, two-dimensional fractionation of suspensions in microfluidic platforms. The suspended species are driven through an array of regularly spac ed cylindrical posts by applying an electric field across the device. We explore the entire range of orientations of the driving field with respect to the array of obstacles and show that, at specific forcing-angles, particles of different size migrate in different directions, thus enabling continuous, two-dimensional separation. We discuss a number of features observed in the kinetics of the particles, including directional locking and sharp transitions between migration angles upon variations in the direction of the force, that are advantageous for high-resolution two-dimensional separation. A simple model based on individual particle-obstacle interactions accurately describes the migration angle of the particles depending on the orientation of the driving field, and can be used to re-configure driving field depending on the composition of the samples.
We measured the effective diffusion coefficient in regions of microfluidic networks of controlled geometry using the FRAP (Fluorescence Recovery After Photobleaching) technique. The geometry of the networks was based on Voronoi tessellations, and had varying characteristic length scale and porosity. For a fixed network, FRAP experiments were performed in regions of increasing size. Our results indicate that the boundary of the bleached region, and in particular the cumulative area of the channels that connect the bleached region to the rest of the network, are important in the measured value of the effective diffusion coefficient. We found that the statistical geometrical variations between different regions of the network decrease with the size of the bleached region as a power law, meaning that the statistical error of effective medium approximations decrease with the size of the studied medium, although no characteristic length scale could be defined over which the porous medium is equivalent to an effective medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا