ترغب بنشر مسار تعليمي؟ اضغط هنا

The Gaia-ESO Survey: Probes of the inner disk abundance gradient

85   0   0.0 ( 0 )
 نشر من قبل Heather Jacobson
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of the metallicity gradient inside the solar circle (R_GC < 8 kpc) is poorly understood, but studies of Cepheids and a small sample of open clusters suggest that it steepens in the inner disk. We investigate the metallicity gradient of the inner disk using a sample of inner disk open clusters that is three times larger than has previously been studied in the literature to better characterize the gradient in this part of the disk. We used the Gaia-ESO Survey (GES) [Fe/H] values and stellar parameters for stars in 12 open clusters in the inner disk from GES-UVES data. Cluster mean [Fe/H] values were determined based on a membership analysis for each cluster. Where necessary, distances and ages to clusters were determined via comparison to theoretical isochrones. The GES open clusters exhibit a radial metallicity gradient of -0.10+-0.02 dex/kpc, consistent with the gradient measured by other literature studies of field red giant stars and open clusters in the range R_GC ~ 6-12 kpc. We also measure a trend of increasing [Fe/H] with increasing cluster age, as has also been found in the literature. We find no evidence for a steepening of the inner disk metallicity gradient inside the solar circle as earlier studies indicated. The age-metallicity relation shown by the clusters is consistent with that predicted by chemical evolution models that include the effects of radial migration, but a more detailed comparison between cluster observations and models would be premature.



قيم البحث

اقرأ أيضاً

129 - B. Tang , D. Geisler , E. Friel 2017
Milky Way open clusters are very diverse in terms of age, chemical composition, and kinematic properties. Intermediate-age and old open clusters are less common, and it is even harder to find them inside the solar Galactocentric radius, due to the hi gh mortality rate and strong extinction inside this region. NGC 6802 is one of the inner disk open clusters (IOCs) observed by the $Gaia$-ESO survey (GES). This cluster is an important target for calibrating the abundances derived in the survey due to the kinematic and chemical homogeneity of the members in open clusters. Using the measurements from $Gaia$-ESO internal data release 4 (iDR4), we identify 95 main-sequence dwarfs as cluster members from the GIRAFFE target list, and eight giants as cluster members from the UVES target list. The dwarf cluster members have a median radial velocity of $13.6pm1.9$ km s$^{-1}$, while the giant cluster members have a median radial velocity of $12.0pm0.9$ km s$^{-1}$ and a median [Fe/H] of $0.10pm0.02$ dex. The color-magnitude diagram of these cluster members suggests an age of $0.9pm0.1$ Gyr, with $(m-M)_0=11.4$ and $E(B-V)=0.86$. We perform the first detailed chemical abundance analysis of NGC 6802, including 27 elemental species. To gain a more general picture about IOCs, the measurements of NGC 6802 are compared with those of other IOCs previously studied by GES, that is, NGC 4815, Trumpler 20, NGC 6705, and Berkeley 81. NGC 6802 shows similar C, N, Na, and Al abundances as other IOCs. These elements are compared with nucleosynthetic models as a function of cluster turn-off mass. The $alpha$, iron-peak, and neutron-capture elements are also explored in a self-consistent way.
We analyze the oxygen abundances of a stellar sample representative of the two major Galactic populations: the thin and thick disks. The aim is to investigate the differences between members of the Galactic disks and to contribute to the understandin g on the origin of oxygen chemical enrichment in the Galaxy. The analysis is based on the [O,{sc i}]=6300.30,AA~ oxygen line in HR spectra ($Rsim$52,500) obtained from the GES Survey. By comparing the observed spectra with a theoretical dataset, computed in LTE with the SPECTRUM synthesis and ATLAS12 codes, we derive the oxygen abundances of 516 FGK dwarfs for which we have previously measured carbon abundances. Based on kinematic, chemical and dynamical considerations we identify 20 thin and 365 thick disk members. We study potential trends of both subsamples in terms of their chemistry ([O/H], [O/Fe], [O/Mg], and [C/O] versus [Fe/H] and [Mg/H]), age, and position in the Galaxy. Main results are: (a) [O/H] and [O/Fe] ratios versus [Fe/H] show systematic differences between thin and thick disk stars with enhanced O abundance of thick disk stars with respect to thin disk members and a monotonic decrement of [O/Fe] with increasing metallicity, even at metal-rich regime; (b) a smooth correlation of [O/Mg] with age in both populations, suggesting that this abundance ratio can be a good proxy of stellar ages within the Milky Way; (c) thin disk members with [Fe/H]$simeq0$ display a [C/O] ratio smaller than the solar value, suggesting a possibly outward migration of the Sun from lower Galactocentric radii.
Context: Trumpler 23 is a moderately populated, intermediate-age open cluster within the solar circle at a Rgc ~6 kpc. It is in a crowded field very close to the Galactic plane and the color-magnitude diagram shows significant field contamination and possible differential reddening; it is a relatively understudied cluster for these reasons, but its location makes it a key object for determining Galactic abundance distributions. Aims: New data from the Gaia-ESO Survey enable the first ever radial velocity and spectroscopic metallicity measurements for this cluster. We aim to use velocities to isolate cluster members, providing more leverage for determining cluster parameters. Methods: Gaia-ESO Survey data for 167 potential members have yielded radial velocity measurements, which were used to determine the systemic velocity of the cluster and membership of individual stars. Atmospheric parameters were also used as a check on membership when available. Literature photometry was used to re-determine cluster parameters based on radial velocity member stars only; theoretical isochrones are fit in the V, V-I diagram. Cluster abundance measurements of ten radial-velocity member stars with high-resolution spectroscopy are presented for 24 elements. These abundances have been compared to local disk stars, and where possible placed within the context of literature gradient studies. Results: We find Trumpler 23 to have an age of 0.80 +/- 0.10 Gyr, significant differential reddening with an estimated mean cluster E(V-I) of 1.02 +0.14/-0.09, and an apparent distance modulus of 14.15 +/- 0.20. We find an average cluster metallicity of [Fe/H] = 0.14 +/- 0.03 dex, a solar [alpha/Fe] abundance, and notably subsolar [s-process/Fe] abundances.
The abundance ratio N/O is a useful tool to study the interplay of galactic processes, e.g. star formation efficiency, time-scale of infall and outflow loading factor We aim to trace log(N/O) versus [Fe/H] in the Milky Way and to compare it with a se t of chemical evolution models to understand the role of infall, outflow and star formation efficiency in the building-up of the Galactic disc. We use the abundances from idr2-3, idr4, idr5 data releases of the Gaia-ESO Survey both for Galactic field and open cluster stars.We determine membership and average composition of open clusters and we separate thin and thick disc field stars.We consider the effect of mixing in the abundance of N in giant stars. We compute a grid of chemical evolution models, suited to reproduce the main features of our Galaxy, exploring the effects of the star formation efficiency, the infall time-scale and the differential outflow. With our samples, we map the metallicity range -0.6<[Fe/H]<0.3 with a corresponding -1.2<log(N/O)<-0.2, where the secondary production of N dominates. Thanks to the wide range of Galactocentric distances covered by our samples, we can distinguish the behaviour of log(N/O) in different parts of the Galaxy. Our spatially resolved results allow us to distinguish differences in the evolution of N/O with Galactocentric radius. Comparing the data with our models, we can characterise the radial regions of our Galaxy. A shorter infall time-scale is needed in the inner regions, while the outer regions need a longer infall time-scale, coupled with a higher star formation efficiency. We compare our results with nebular abundances obtained in MaNGA galaxies, finding in our Galaxy a much wider range of log(N/O) than in integrated observations of external galaxies of similar stellar mass, but similar to the ranges found in studies of individual H ii regions.
We describe the atomic and molecular data that were used for the abundance analyses of FGK-type stars carried out within the Gaia-ESO Survey. We present an unprecedented effort to create a homogeneous line list, which was used by several abundance an alysis groups to calculate synthetic spectra and equivalent widths. The atomic data are accompanied by quality indicators and detailed references to the sources. The atomic and molecular data are made publicly available in electronic form. In general experimental transition probabilities were preferred but theoretical values were also used. Astrophysical gf-values were avoided due to the model-dependence of such a procedure. For elements whose lines are significantly affected by hyperfine structure or isotopic splitting a concerted effort has been made to collate the necessary data for the individual line components. We also performed a detailed investigation of available data for line broadening due to collisions with neutral hydrogen atoms. Synthetic spectra calculated for the Sun and Arcturus were used to assess the blending properties of the lines. Among a subset of over 1300 lines of 35 elements in the wavelength ranges from 475 nm to 685 nm and from 850 nm to 895 nm we identified about 200 lines of 24 species which have accurate gf-values and are free of blends in the spectra of the Sun and Arcturus. For the broadening due to collisions with neutral hydrogen we recommend data based on Anstee-Barklem-OMara theory, where available, and to avoid lines of neutral species otherwise. Theoretical broadening data by R.L. Kurucz should be used for Sc II, Ti II, and Y II lines. For ionised rare-earth species the Unsold approximation with an enhancement factor of 1.5 for the line width can be used. Desirable improvements in atomic data were identified for a number of species, including Al I, S I, Cr II, Na I, Si I, Ca II, and Ni I.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا