ﻻ يوجد ملخص باللغة العربية
The variation with time from 1956-2002 of the globally averaged rate of ionization produced by cosmic rays in the atmosphere is deduced and shown to have a cyclic component of period roughly twice the 11 year solar cycle period. Long term variations in the global average surface temperature as a function of time since 1956 are found to have a similar cyclic component. The cyclic variations are also observed in the solar irradiance and in the mean daily sun spot number. The cyclic variation in the cosmic ray rate is observed to be delayed by 2-4 years relative to the temperature, the solar irradiance and daily sun spot variations suggesting that the origin of the correlation is more likely to be direct solar activity than cosmic rays. Assuming that the correlation is caused by such solar activity, we deduce that the maximum recent increase in the mean surface temperature of the Earth which can be ascribed to this activity is $lesssim14%$ of the observed global warming.
The continuous wavelet transform may be enhanced by deconvolution with the wavelet response function. After correcting for the cone-of-influence, the power spectral density of the solar magnetic record as given by the derectified yearly sunspot numbe
The importance of snow cover and ice extent in the Northern Hemisphere was recognized by various authors leading to a positive feedback of surface reflectivity on climate. In fact, the retreat of Arctic sea ice is accompanied by enhanced solar input
In this paper, starting from the updated time series of global temperature anomalies, Ta, we show how the solar component affects the observed behavior using, as an indicator of solar activity, the Solar Sunspot Number SSN. The results that are found
During the last few years a number of works have proposed that planetary harmonics regulate solar oscillations and the Earth climate. Herein I address some critiques. Detailed analysis of the data do support the planetary theory of solar and climate
We report the results of polarimetric observations of the total solar eclipse of 21 August 2017 from Rexburg, Idaho (USA). We use three synchronized DSLR cameras with polarization filters oriented at 0{deg}, 60{deg}, and 120{deg} to provide high-dyna