ﻻ يوجد ملخص باللغة العربية
During the last few years a number of works have proposed that planetary harmonics regulate solar oscillations and the Earth climate. Herein I address some critiques. Detailed analysis of the data do support the planetary theory of solar and climate variation. In particular, I show that: (1) high-resolution cosmogenic 10Be and 14C solar activity proxy records both during the Holocene and during the Marine Interglacial Stage 9.3 (MIS 9.3), 325-336 kyr ago, present four common spectral peaks at about 103, 115, 130 and 150 yrs (this is the frequency band that generates Maunder and Dalton like grand solar minima) that can be deduced from a simple solar model based on a generic non-linear coupling between planetary and solar harmonics; (2) time-frequency analysis and advanced minimum variance distortion-less response (MVDR) magnitude squared coherence analysis confirm the existence of persistent astronomical harmonics in the climate records at the decadal and multidecadal scales when used with an appropriate window length (110 years) to guarantee a sufficient spectral resolution. However, the best coherence test can be currently made only by comparing directly the temperature and astronomical spectra as done in Scafetta (J. Atmos. Sol. Terr. Phys. 72(13), 951-970, 2010). The spectral coherence between planetary, solar and climatic oscillations is confirmed at the following periods: 5.2 yr, 5.93 yr, 6.62 yr, 7.42 yr, 9.1 yr (main lunar tidal cycle), 10.4 yr (related to the 9.93-10.87-11.86 yr solar cycle harmonics), 13.8-15.0 yr, 20 yr, 30 yr and 61 yr, 103 yr, 115 yr, 130 yr, 150 yr and about 1000 year. This work responds to the critiques of Cauquoin et al. (Astron. Astrophys. 561, A132, 2014) who ignored alternative planetary theories of solar variations, and of Holm (J. Atmos. Sol. Terr. Phys. 110-111, 23-27, 2014) who used inadequate physical and time frequency analysis of the data.
Holm (ASR, 2018) claims that Scafetta (ASR 57, 2121-2135, 2016) is irreproducible because I would have left undocumented the values of two parameters (a reduced-rank index p and a regularization term) that he claimed to be requested in the Magnitude
An oscillation with a period of about 2100-2500 years, the Hallstatt cycle, is found in cosmogenic radioisotopes (C-14 and Be-10) and in paleoclimate records throughout the Holocene. Herein we demonstrate the astronomical origin of this cycle. Namely
Power spectra of global surface temperature (GST) records reveal major periodicities at about 9.1, 10-11, 19-22 and 59-62 years. The Coupled Model Intercomparison Project 5 (CMIP5) general circulation models (GCMs), to be used in the IPCC (2013), are
Gil-Alana et al. (Physica A: 396, 42-50, 2014) compared the sunspot number record and the temperature record and found that they differ: the sunspot number record is characterized by a dominant 11-year cycle while the temperature record appears to be
Recent years have seen an increased interest in the question of whether the gravitational action of planets could have an influence on the solar dynamo. Without discussing the observational validity of the claimed correlations, we ask for a possible