ترغب بنشر مسار تعليمي؟ اضغط هنا

Globally nilpotent differential operators and the square Ising model

266   0   0.0 ( 0 )
 نشر من قبل J. M. Maillard
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We recall various multiple integrals related to the isotropic square Ising model, and corresponding, respectively, to the n-particle contributions of the magnetic susceptibility, to the (lattice) form factors, to the two-point correlation functions and to their lambda-extensions. These integrals are holonomic and even G-functions: they satisfy Fuchsian linear differential equations with polynomial coefficients and have some arithmetic properties. We recall the explicit forms, found in previous work, of these Fuchsian equations. These differential operators are very selected Fuchsian linear differential operators, and their remarkable properties have a deep geometrical origin: they are all globally nilpotent, or, sometimes, even have zero p-curvature. Focusing on the factorised parts of all these operators, we find out that the global nilpotence of the factors corresponds to a set of selected structures of algebraic geometry: elliptic curves, modular curves, and even a remarkable weight-1 modular form emerging in the three-particle contribution $ chi^{(3)}$ of the magnetic susceptibility of the square Ising model. In the case where we do not have G-functions, but Hamburger functions (one irregular singularity at 0 or $ infty$) that correspond to the confluence of singularities in the scaling limit, the p-curvature is also found to verify new structures associated with simple deformations of the nilpotent property.



قيم البحث

اقرأ أيضاً

We study the full susceptibility of the Ising model modulo powers of primes. We find exact functional equations for the full susceptibility modulo these primes. Revisiting some lesser-known results on discrete finite automata, we show that these resu lts can be seen as a consequence of the fact that, modulo 2^r, one cannot distinguish the full susceptibility from some simple diagonals of rational functions which reduce to algebraic functions modulo 2^r, and, consequently, satisfy exact functional equations modulo 2^r. We sketch a possible physical interpretation of these functional equations modulo 2^r as reductions of a master functional equation corresponding to infinite order symmetries such as the isogenies of elliptic curves. One relevant example is the Landen transformation which can be seen as an exact generator of the Ising model renormalization group. We underline the importance of studying a new class of functions corresponding to ratios of diagonals of rational functions: they reduce to algebraic functions modulo powers of primes and they may have solutions with natural boundaries.
We consider the Fuchsian linear differential equation obtained (modulo a prime) for $tilde{chi}^{(5)}$, the five-particle contribution to the susceptibility of the square lattice Ising model. We show that one can understand the factorization of the c orresponding linear differential operator from calculations using just a single prime. A particular linear combination of $tilde{chi}^{(1)}$ and $tilde{chi}^{(3)}$ can be removed from $tilde{chi}^{(5)}$ and the resulting series is annihilated by a high order globally nilpotent linear ODE. The corresponding (minimal order) linear differential operator, of order 29, splits into factors of small orders. A fifth order linear differential operator occurs as the left-most factor of the depleted differential operator and it is shown to be equivalent to the symmetric fourth power of $L_E$, the linear differential operator corresponding to the elliptic integral $E$. This result generalizes what we have found for the lower order terms $tilde{chi}^{(3)}$ and $tilde{chi}^{(4)}$. We conjecture that a linear differential operator equivalent to a symmetric $(n-1)$-th power of $L_E$ occurs as a left-most factor in the minimal order linear differential operators for all $tilde{chi}^{(n)}$s.
164 - Alfred Hucht 2016
The partition function of the square lattice Ising model on the rectangle with open boundary conditions in both directions is calculated exactly for arbitrary system size $Ltimes M$ and temperature. We start with the dimer method of Kasteleyn, McCoy & Wu, construct a highly symmetric block transfer matrix and derive a factorization of the involved determinant, effectively decomposing the free energy of the system into two parts, $F(L,M)=F_mathrm{strip}(L,M)+F_mathrm{strip}^mathrm{res}(L,M)$, where the residual part $F_mathrm{strip}^mathrm{res}(L,M)$ contains the nontrivial finite-$L$ contributions for fixed $M$. It is given by the determinant of a $frac{M}{2}times frac{M}{2}$ matrix and can be mapped onto an effective spin model with $M$ Ising spins and long-range interactions. While $F_mathrm{strip}^mathrm{res}(L,M)$ becomes exponentially small for large $L/M$ or off-critical temperatures, it leads to important finite-size effects such as the critical Casimir force near criticality. The relations to the Casimir potential and the Casimir force are discussed.
307 - Alfred Hucht 2021
Based on the results obtained in [Hucht, J. Phys. A: Math. Theor. 50, 065201 (2017)], we show that the partition function of the anisotropic square lattice Ising model on the $L times M$ rectangle, with open boundary conditions in both directions, is given by the determinant of a $M/2 times M/2$ Hankel matrix, that equivalently can be written as the Pfaffian of a skew-symmetric $M times M$ Toeplitz matrix. The $M-1$ independent matrix elements of both matrices are Fourier coefficients of a certain symbol function, which is given by the ratio of two characteristic polynomials. These polynomials are associated to the different directions of the system, encode the respective boundary conditions, and are directly related through the symmetry of the considered Ising model under exchange of the two directions. The results can be generalized to other boundary conditions and are well suited for the analysis of finite-size scaling functions in the critical scaling limit using SzegH{o}s theorem.
In the present paper, we construct quantum Markov chains (QMC) over the Comb graphs. As an application of this construction, it is proved the existence of the disordered phase for the Ising type models (within QMC scheme) over the Comb graphs. Moreov er, it is also established that the associated QMC has clustering property with respect to translations of the graph. We stress that this paper is the first one where a nontrivial example of QMC over non-regular graphs is given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا