ترغب بنشر مسار تعليمي؟ اضغط هنا

Operation of a GERDA Phase I prototype detector in liquid argon and nitrogen

249   0   0.0 ( 0 )
 نشر من قبل Marik Barnabe Heider
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف M. Barnabe Heider




اسأل ChatGPT حول البحث

The GERDA (GERmanium Detector Array) experiment aiming to search for the neutrinoless double beta decay of 76Ge at the Laboratori Nazionali Del Gran Sasso (LNGS), Italy, will operate bare enriched high-purity germanium (HPGe) detectors in liquid argon. GERDA Phase I will use the enriched diodes from the previous Heidelberg-Moscow (HdM) and IGEX experiments. With the HPGe detectors mounted in a low-mass holder, GERDA aims at an excellent energy resolution and extremely low background. The goal is to check the claim for the neutrinoless double beta decay evidence in the HdM 76Ge experiment within one year of data taking. Before dismounting the enriched diodes from their cryostat, the performance parameters of the HdM and the IGEX detectors have been measured. The diodes have been removed from their cryostats, their dimensions measured and they have been put under va-cuum in a transportation container. They are now being refurbished for GERDA Phase I at Canberra Semiconductor NV. Before operating the enriched diodes, a non-enriched HPGe p-type detector mounted in a low-mass holder is operated in the liquid argon test facility of the GERDA Detector Laboratory (GDL) at LNGS. Since January 2006, the testing of the prototype detector is being carried out in the GDL as well as at the site of the detector manufacturer.



قيم البحث

اقرأ أيضاً

A dedicated test of the effects of Nitrogen contamination in liquid Argon has been performed at the INFN-Gran Sasso Laboratory (LNGS, Italy) within the WArP R&D program. A detector has been designed and assembled for this specific task and connected to a system for the injection of controlled amounts of gaseous Nitrogen into the liquid Argon. Purpose of the test is to detect the reduction of the Ar scintillation light emission as a function of the amount of the Nitrogen contaminant injected in the Argon volume. A wide concentration range, spanning from about 10^-1 ppm up to about 10^3 ppm, has been explored. Measurements have been done with electrons in the energy range of minimum ionizing particles (gamma-conversion from radioactive sources). Source spectra at different Nitrogen contaminations are analyzed, showing sensitive reduction of the scintillation yield at increasing concentrations. The rate constant of the light quenching process induced by Nitrogen in liquid Ar has been found to be k(N2)=0.11 micros^-1 ppm^-1. Direct PMT signals acquisition at high time resolution by fast Waveform recording allowed to extract with high precision the main characteristics of the scintillation light emission in pure and contaminated LAr. In particular, the decreasing behavior in lifetime and relative amplitude of the slow component is found to be appreciable from O(1 ppm) of Nitrogen concentrations.
The first true coaxial 18-fold segmented n-type HPGe prototype detector produced by Canberra-France for the GERDA neutrinoless double beta-decay project was tested both at Canberra-France and at the Max-Planck-Institut fuer Physik in Munich. The main characteristics of the detector are given and measurements concerning detector properties are described. A novel method to establish contacts between the crystal and a Kapton cable is presented.
Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the Standard Model of particle physics. This Letter reports the results from Phase I of the GERmanium Detector Array (GERD A) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope 76Ge. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kgyr. A blind analysis is performed. The background index is about 1.10^{-2} cts/(keV kg yr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of 76Ge, T_1/2 > 2.1 10^{25} yr (90% C.L.). The combination with the results from the previous experiments with 76Ge yields T_1/2 > 3.0 10^{25} yr (90% C.L.).
The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta ($0 ubetabeta$) decay of $^{76}$Ge. The technological challenge of GERDA is to operate in a background-f ree regime in the region of interest (ROI) after analysis cuts for the full 100$,$kg$cdot$yr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around $Q_{betabeta}$ for the $0 ubetabeta$ search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos ($2 ubetabeta$) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for GERDA Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of $16.04^{+0.78}_{-0.85} cdot 10^{-3},$cts/(kg$cdot$keV$cdot$yr) for the enriched BEGe data set and $14.68^{+0.47}_{-0.52} cdot 10^{-3},$cts/(kg$cdot$keV$cdot$yr) for the enriched coaxial data set. These values are similar to the one of Gerda Phase I despite a much larger number of detectors and hence radioactive hardware components.
102 - M. Cadeddu , M. Lissia , P. Agnes 2017
We examine the sensitivity of a large scale two-phase liquid argon detector to the directionality of the dark matter signal. This study was performed under the assumption that, above 50 keV of recoil energy, one can determine (with some resolution) t he direction of the recoil nucleus without head-tail discrimination, as suggested by past studies that proposed to exploit the dependence of columnar recombination on the angle between the recoil nucleus direction and the electric field. In this paper we study the differential interaction recoil rate as a function of the recoil direction angle with respect to the zenith for a detector located at the Laboratori Nazionali del Gran Sasso and we determine its diurnal and seasonal modulation. Using a likelihood-ratio based approach we show that, with the angular information alone, 100 events are enough to reject the isotropic hypothesis at three standard deviation level. For an exposure of 100 tonne years this would correspond to a spin independent WIMP-nucleon cross section of about 10^-46 cm^2 at 200 GeV WIMP mass. The results presented in this paper provide strong motivation for the experimental determination of directional recoil effects in two-phase liquid argon detectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا