ﻻ يوجد ملخص باللغة العربية
The equation of state of a weakly interacting two-dimensional Bose gas is studied at zero temperature by means of quantum Monte Carlo methods. Going down to as low densities as na^2 ~ 10^{-100} permits us for the first time to obtain agreement on beyond mean-field level between predictions of perturbative methods and direct many-body numerical simulation, thus providing an answer to the fundamental question of the equation of state of a two-dimensional dilute Bose gas in the universal regime (i.e. entirely described by the gas parameter na^2). We also show that the measure of the frequency of a breathing collective oscillation in a trap at very low densities can be used to test the universal equation of state of a two-dimensional Bose gas.
Using a multiple-image reconstruction method applied to a harmonically trapped Bose gas, we determine the equation of state of uniform matter across the critical transition point, within the local density approximation. Our experimental results provi
We analyze the two-body momentum correlation function for a uniform weakly interacting one-dimensional Bose gas. We show that the strong positive correlation between opposite momenta, expected in a Bose-Einstein condensate with a true long-range orde
We prepare a chemically and thermally one-dimensional (1d) quantum degenerate Bose gas in a single microtrap. We introduce a new interferometric method to distinguish the quasicondensate fraction of the gas from the thermal cloud at finite temperatur
We examine the weakly interacting atoms in an ultracold Fermi gas leading to a state of macroscopic coherence, from a theoretical perspective. It has been shown that this state can be described as a fermionic coherent state. These coherent states are
The zero-temperature equation of state is analyzed in low-dimensional bosonic systems. In the dilute regime the equation of state is universal in terms of the gas parameter, i.e. it is the same for different potentials with the same value of the s-wa