ﻻ يوجد ملخص باللغة العربية
We discuss the treatment of initial datatypes and final process types in the wide-spectrum language HasCASL. In particular, we present specifications that illustrate how datatypes and process types arise as bootstrapped concepts using HasCASLs type class mechanism, and we describe constructions of types of finite and infinite trees that establish the conservativity of datatype and process type declarations adhering to certain reasonable formats. The latter amounts to modifying known constructions from HOL to avoid unique choice; in categorical terminology, this means that we establish that quasitoposes with an internal natural numbers object support initial algebras and final coalgebras for a range of polynomial functors, thereby partially generalising corresponding results from topos theory. Moreover, we present similar constructions in categories of internal complete partial orders in quasitoposes.
This paper introduces an expressive class of indexed quotient-inductive types, called QWI types, within the framework of constructive type theory. They are initial algebras for indexed families of equational theories with possibly infinitary operator
We introduce an operational rewriting-based semantics for strictly positive nested higher-order (co)inductive types. The semantics takes into account the limits of infinite reduction sequences. This may be seen as a refinement and generalization of t
Higher inductive-inductive types (HIITs) generalize inductive types of dependent type theories in two ways. On the one hand they allow the simultaneous definition of multiple sorts that can be indexed over each other. On the other hand they support e
We present guarded dependent type theory, gDTT, an extensional dependent type theory with a `later modality and clock quantifiers for programming and proving with guarded recursive and coinductive types. The later modality is used to ensure the produ
We present the guarded lambda-calculus, an extension of the simply typed lambda-calculus with guarded recursive and coinductive types. The use of guarded recursive types ensures the productivity of well-typed programs. Guarded recursive types may be