ﻻ يوجد ملخص باللغة العربية
The complete analytical solutions of the geodesic equation of massive test particles in higher dimensional Schwarzschild, Schwarzschild-(anti)de Sitter, Reissner-Nordstroem and Reissner-Nordstroem-(anti)de Sitter space--times are presented. Using the Jacobi inversion problem restricted to the theta divisor the explicit solution is given in terms of Kleinian sigma functions. The derived orbits depend on the structure of the roots of the characteristic polynomials which depend on the particles energy and angular momentum, on the mass and the charge of the gravitational source, and the cosmological constant. We discuss the general structure of the orbits and show that due to the specific dimension-independent form of the angular momentum and the cosmological force a rich variety of orbits can emerge only in four and five dimensions. We present explicit analytical solutions for orbits up to 11 dimensions. A particular feature of Reissner--Nordstroem space-times is that bound and escape orbits traverse through different universes.
The complete sets of analytic solutions of the geodesic equation in Taub--NUT--(anti-)de Sitter, Kerr--(anti-)de Sitter and also in general Plebanski--Demianski space--times without acceleration are presented. The solutions are given in terms of the Kleinian sigma functions.
We investigate the proper projective collineation in non-static spherically symmetric space-times using direct integration and algebraic techniques. Studying projective collineation in the above space-times, it is shown that the space-times which adm
In the present work we analyze all the possible spherically symmetric exterior vacuum solutions allowed by the Einstein-Aether theory with static aether. We show that there are four classes of solutions corresponding to different values of a combinat
An algorithm presented by K. Lake to obtain all static spherically symmetric perfect fluid solutions was recently extended by L. Herrera to the interesting case of locally anisotropic fluids (principal stresses unequal). In this work we develop an al
In this work we investigate analytic static and spherically symmetric solutions of a generalized theory of gravity in the Einstein-Cartan formalism. The main goal consists in analyzing the behavior of the solutions under the influence of a quadratic