ﻻ يوجد ملخص باللغة العربية
In a topological quantum computer, braids of non-Abelian anyons in a (2+1)-dimensional space-time form quantum gates, whose fault tolerance relies on the topological, rather than geometric, properties of the braids. Here we propose to create and exploit redundant geometric degrees of freedom to improve the theoretical accuracy of topological single- and two-qubit quantum gates. We demonstrate the power of the idea using explicit constructions in the Fibonacci model. We compare its efficiency with that of the Solovay-Kitaev algorithm and explain its connection to the leakage errors reduction in an earlier construction [Phys. Rev. A 78, 042325 (2008)].
The boundary of topological superconductors might lead to the appearance of Majorana edge modes, whose non-trivial exchange statistics can be used for topological quantum computing. In branched nanowire networks one can exchange Majorana states by ti
We introduce a scheme for preparation, manipulation, and readout of Majorana zero modes in semiconducting wires with mesoscopic superconducting islands. Our approach synthesizes recent advances in materials growth with tools commonly used in quantum-
We propose a universal quantum computing scheme in which the orthogonal qubit states $|0>$ and $|1>$ are identical in their single-particle spin and charge properties. Each qubit is contained in a single quantum dot and gate operations are induced al
We describe a formulation of the group action principle, for linear Nambu flows, that explicitly takes into account all the defining properties of Nambu mechanics and illustrate its relevance by showing how it can be used to describe the off-shell st
Over the last 100 years, the group-theoretic characterization of crystalline solids has provided the foundational language for diverse problems in physics and chemistry. There exist two classes of crystalline solids: nonmagnetic crystals left invaria