ترغب بنشر مسار تعليمي؟ اضغط هنا

A spatially resolved study of photoelectric heating and [CII] cooling in the LMC

150   0   0.0 ( 0 )
 نشر من قبل S. Hony
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(abridged) We study photoelectric heating throughout the Large Magellanic Cloud. We quantify the importance of the [CII] cooling line and the photoelectric heating process of various environments in the LMC and investigate which parameters control the extent of photoelectric heating. We use the BICE [CII] map and the Spitzer/SAGE infrared maps. We examine the spatial variations in the efficiency of photoelectric heating: photoelectric heating rate over power absorbed by grains. We correlate the photoelectric heating efficiency and the emission from various dust constituents and study the variations as a function of Halpha emission, dust temperatures, and the total infrared luminosity. From this we estimate radiation field, gas temperature, and electron density. We find systematic variations in photoelectric efficiency. The highest efficiencies are found in the diffuse medium, while the lowest coincide with bright star-forming regions (~1.4 times lower). The [CII] line emission constitutes 1.32% of the far infrared luminosity across the whole of the LMC. We find correlations between the [CII] emission and ratios of the mid infrared and far infrared bands, which comprise various dust constituents. The correlations are interpreted in light of the spatial variations of the dust abundance and by the local environmental conditions that affect the dust emission properties. As a function of the total infrared surface brightness, S_{TIR}, the [CII] surface brightness can be described as: S_{[CII]}=1.25 S_{TIR}^{0.69} [10^{-3} erg s^{-1} cm^{-2} sr^{-1}]. The [CII] emission is well-correlation with the 8 micrometer emission, suggesting that the polycyclic aromatic hydrocarbons play a dominant role in the photoelectric heating process.



قيم البحث

اقرأ أيضاً

We present [CII] 158um measurements from over 15,000 resolved regions within 54 nearby galaxies of the KINGFISH program to investigate the so-called [CII] line cooling deficit long known to occur in galaxies with different luminosities. The [CII]/TIR ratio ranges from above 1% to below 0.1% in the sample, with a mean value of 0.48+-0.21%. We find that the surface density of 24um emission dominates this trend, with [CII]/TIR dropping as nuInu{24um} increases. Deviations from this overall decline are correlated with changes in the gas phase metal abundance, with higher metallicity associated with deeper deficits at a fixed surface brightness. We supplement the local sample with resolved [CII] measurements from nearby luminous infrared galaxies and high redshift sources from z=1.8-6.4, and find that star formation rate density drives a continuous trend of deepening [CII] deficit across six orders of magnitude in SFRD. The tightness of this correlation suggests that an approximate star formation rate density can be estimated directly from global measurements of [CII]/TIR, and a relation is provided to do so. Several low-luminosity AGN hosts in the sample show additional and significant central suppression of [CII]/TIR, but these deficit enhancements occur not in those AGN with the highest X-ray luminosities, but instead those with the highest central starlight intensities. Taken together, these results demonstrate that the [CII] cooling line deficit in galaxies likely arises from local physical phenomena in interstellar gas.
GRB 020903 is a long-duration gamma ray burst (LGRB) with a host galaxy close enough and extended enough for spatially-resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy ho st complex that appears to consist of four interacting components. Here we present the results of spatially-resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles we were able to obtain optical spectra (3600-9000{AA}) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable sub-solar metallicities. We conclude that, in agreement with past spatially-resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.
SPT0346-52 is one of the most most luminous and intensely star-forming galaxies in the universe, with L_FIR > 10^13 L_sol and Sigma_SFR ~ 4200 M_sol yr^-1 kpc^-2. In this paper, we present ~0.15 ALMA observations of the [CII]158micron emission line i n this z=5.7 dusty star-forming galaxy. We use a pixellated lensing reconstruction code to spatially and kinematically resolve the source-plane [CII] and rest-frame 158 micron dust continuum structure at ~700 pc (~0.12) resolution. We discuss the [CII] deficit with a pixellated study of the L_[CII]/L_FIR ratio in the source plane. We find that individual pixels within the galaxy follow the same trend found using unresolved observations of other galaxies, indicating that the deficit arises on scales <700 pc. The lensing reconstruction reveals two spatially and kinematically separated components (~1 kpc and ~500 km s^-1 apart) connected by a bridge of gas. Both components are found to be globally unstable, with Toomre Q instability parameters << 1 everywhere. We argue that SPT0346-52 is undergoing a major merger, which is likely driving the intense and compact star formation.
166 - P. Beirao , L. Armus , G. Helou 2012
NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar and an active nucleus. We present a detailed study of the spatial variation of the far infrared (FIR) [CII]158um and [OI]63um lines and mid-inf rared H2 emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS, and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([CII]158um+[OI]63um)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7um PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [CII]158{mu}m/PAH(5.5 - 14um) is found. PAHs in the ring are responsible for a factor of two more [CII]158um and [OI]63um emission per unit mass than PAHs in the Enuc S. SED modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high intensity photodissociation regions (PDRs), in which case G0 ~ 10^2.3 and nH ~ 10^3.5 cm^-3 in the ring. For these values of G0 and nH PDR models cannot reproduce the observed H2 emission. Much of the the H2 emission in the starburst ring could come from warm regions in the diffuse ISM that are heated by turbulent dissipation or shocks.
The discrepancy between expected and observed cooling rates of X-ray emitting gas has led to the {it cooling flow problem} at the cores of clusters of galaxies. A variety of models have been proposed to model the observed X-ray spectra and resolve th e cooling flow problem, which involves heating the cold gas through different mechanisms. As a result, realistic models of X-ray spectra of galaxy clusters need to involve both heating {it and} cooling mechanisms. In this paper, we argue that the heating time-scale is set by the magnetohydrodynamic (MHD) turbulent viscous heating for the Intracluster plasma, parametrised by the Shakura-Sunyaev viscosity parameter, $alpha$. Using a cooling+heating flow model, we show that a value of $alphasimeq 0.05$ (with 10% scatter) provides improved fits to the X-ray spectra of cooling flow, while at the same time, predicting reasonable cooling efficiency, $epsilon_{cool} = 0.33^{+0.63}_{-0.15}$. Our inferred values for $alpha$ based on X-ray spectra are also in line with direct measurements of turbulent pressure in simulations and observations of galaxy clusters. This simple picture unifies astrophysical accretion, as a balance of MHD turbulent heating and cooling, across more than 16 orders of magnitudes in scale, from neutron stars to galaxy clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا