ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended Formulations for Stable Set Polytopes of Graphs Without Two Disjoint Odd Cycles

130   0   0.0 ( 0 )
 نشر من قبل Tony Huynh
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $G$ be an $n$-node graph without two disjoint odd cycles. The algorithm of Artmann, Weismantel and Zenklusen (STOC17) for bimodular integer programs can be used to find a maximum weight stable set in $G$ in strongly polynomial time. Building on structural results characterizing sufficiently connected graphs without two disjoint odd cycles, we construct a size-$O(n^2)$ extended formulation for the stable set polytope of $G$.



قيم البحث

اقرأ أيضاً

The extension complexity $mathsf{xc}(P)$ of a polytope $P$ is the minimum number of facets of a polytope that affinely projects to $P$. Let $G$ be a bipartite graph with $n$ vertices, $m$ edges, and no isolated vertices. Let $mathsf{STAB}(G)$ be the convex hull of the stable sets of $G$. It is easy to see that $n leqslant mathsf{xc} (mathsf{STAB}(G)) leqslant n+m$. We improve both of these bounds. For the upper bound, we show that $mathsf{xc} (mathsf{STAB}(G))$ is $O(frac{n^2}{log n})$, which is an improvement when $G$ has quadratically many edges. For the lower bound, we prove that $mathsf{xc} (mathsf{STAB}(G))$ is $Omega(n log n)$ when $G$ is the incidence graph of a finite projective plane. We also provide examples of $3$-regular bipartite graphs $G$ such that the edge vs stable set matrix of $G$ has a fooling set of size $|E(G)|$.
Lovasz (1965) characterized graphs without two vertex-disjoint cycles, which implies that such graphs have at most three vertices hitting all cycles. In this paper, we ask whether such a small hitting set exists for $S$-cycles, when a graph has no tw o vertex-disjoint $S$-cycles. For a graph $G$ and a vertex set $S$ of $G$, an $S$-cycle is a cycle containing a vertex of $S$. We provide an example $G$ on $21$ vertices where $G$ has no two vertex-disjoint $S$-cycles, but three vertices are not sufficient to hit all $S$-cycles. On the other hand, we show that four vertices are enough to hit all $S$-cycles whenever a graph has no two vertex-disjoint $S$-cycles.
It is well known that spectral Tur{a}n type problem is one of the most classical {problems} in graph theory. In this paper, we consider the spectral Tur{a}n type problem. Let $G$ be a graph and let $mathcal{G}$ be a set of graphs, we say $G$ is texti t{$mathcal{G}$-free} if $G$ does not contain any element of $mathcal{G}$ as a subgraph. Denote by $lambda_1$ and $lambda_2$ the largest and the second largest eigenvalues of the adjacency matrix $A(G)$ of $G,$ respectively. In this paper we focus on the characterization of graphs without short odd cycles according to the adjacency eigenvalues of the graphs. Firstly, an upper bound on $lambda_1^{2k}+lambda_2^{2k}$ of $n$-vertex ${C_3,C_5,ldots,C_{2k+1}}$-free graphs is established, where $k$ is a positive integer. All the corresponding extremal graphs are identified. Secondly, a sufficient condition for non-bipartite graphs containing an odd cycle of length at most $2k+1$ in terms of its spectral radius is given. At last, we characterize the unique graph having the maximum spectral radius among the set of $n$-vertex non-bipartite graphs with odd girth at least $2k+3,$ which solves an open problem proposed by Lin, Ning and Wu [Eigenvalues and triangles in graphs, Combin. Probab. Comput. 30 (2) (2021) 258-270].
Let $F_{a_1,dots,a_k}$ be a graph consisting of $k$ cycles of odd length $2a_1+1,dots, 2a_k+1$, respectively which intersect in exactly a common vertex, where $kgeq1$ and $a_1ge a_2ge cdotsge a_kge 1$. In this paper, we present a sharp upper bound fo r the signless Laplacian spectral radius of all $F_{a_1,dots,a_k}$-free graphs and characterize all extremal graphs which attain the bound. The stability methods and structure of graphs associated with the eigenvalue are adapted for the proof.
This paper proves a corner occupying theorem for the two-dimensional integral rectangle packing problem, stating that if it is possible to orthogonally place n arbitrarily given integral rectangles into an integral rectangular container without overl apping, then we can achieve a feasible packing by successively placing an integral rectangle onto a bottom-left corner in the container. Based on this theorem, we might develop efficient heuristic algorithms for solving the integral rectangle packing problem. In fact, as a vague conjecture, this theorem has been implicitly mentioned with different appearances by many people for a long time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا