ترغب بنشر مسار تعليمي؟ اضغط هنا

An Improved Exact Riemann Solver for Relativistic Hydrodynamics

217   0   0.0 ( 0 )
 نشر من قبل Zanotti Olindo
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A Riemann problem with prescribed initial conditions will produce one of three possible wave patterns corresponding to the propagation of the different discontinuities that will be produced once the system is allowed to relax. In general, when solving the Riemann problem numerically, the determination of the specific wave pattern produced is obtained through some initial guess which can be successively discarded or improved. We here discuss a new procedure, suitable for implementation in an exact Riemann solver in one dimension, which removes the initial ambiguity in the wave pattern. In particular we focus our attention on the relativistic velocity jump between the two initial states and use this to determine, through some analytic conditions, the wave pattern produced by the decay of the initial discontinuity. The exact Riemann problem is then solved by means of calculating the root of a nonlinear equation. Interestingly, in the case of two rarefaction waves, this root can even be found analytically. Our procedure is straightforward to implement numerically and improves the efficiency of numerical codes based on exact Riemann solvers.



قيم البحث

اقرأ أيضاً

We extend our approach for the exact solution of the Riemann problem in relativistic hydrodynamics to the case in which the fluid velocity has components tangential to the initial discontinuity. As in one-dimensional flows, we here show that the wave -pattern produced in a multidimensional relativistic Riemann problem can be predicted entirely by examining the initial conditions. Our method is logically very simple and allows for a numerical implementation of an exact Riemann solver which is both straightforward and computationally efficient. The simplicity of the approach is also important for revealing special relativistic effects responsible for a smooth transition from one wave-pattern to another when the tangential velocities in the initial states are suitably varied. While the content of this paper is focussed on a flat spacetime, the local Lorentz invariance allows its use also in fully general relativistic calculations.
A number of astrophysical scenarios possess and preserve an overall cylindrical symmetry also when undergoing a catastrophic and nonlinear evolution. Exploiting such a symmetry, these processes can be studied through numerical-relativity simulations at smaller computational costs and at considerably larger spatial resolutions. We here present a new flux-conservative formulation of the relativistic hydrodynamics equations in cylindrical coordinates. By rearranging those terms in the equations which are the sources of the largest numerical errors, the new formulation yields a global truncation error which is one or more orders of magnitude smaller than those of alternative and commonly used formulations. We illustrate this through a series of numerical tests involving the evolution of oscillating spherical and rotating stars, as well as shock-tube tests.
We discuss the procedure for the exact solution of the Riemann problem in special relativistic magnetohydrodynamics (MHD). We consider both initial states leading to a set of only three waves analogous to the ones in relativistic hydrodynamics, as we ll as generic initial states leading to the full set of seven MHD waves. Because of its generality, the solution presented here could serve as an important test for those numerical codes solving the MHD equations in relativistic regimes.
82 - J.M. Ibanez 1999
Our contribution concerns with the numerical solution of the 3D general relativistic hydrodynamical system of equations within the framework of the 3+1 formalism. We summarize the theoretical ingredients which are necessary in order to build up a num erical scheme based on the solution of local Riemann problems. Hence, the full spectral decomposition of the Jacobian matrices of the system, i.e., the eigenvalues and the right and left eigenvectors, is explicitly shown. An alternative approach consists in using any of the special relativistic Riemann solvers recently developed for describing the evolution of special relativistic flows. Our proposal relies on a local change of coordinates in terms of which the spacetime metric is locally Minkowskian and permits an accurate description of numerical general relativistic hydrodynamics.
The numerical solution of relativistic hydrodynamics equations in conservative form requires root-finding algorithms that invert the conservative-to-primitive variables map. These algorithms employ the equation of state of the fluid and can be comput ationally demanding for applications involving sophisticated microphysics models. This work explores the use of machine learning methods to speed up the recovery of primitives in relativistic hydrodynamics. Artificial neural networks are trained to replace either the interpolations of a tabulated equation of state or directly the conservative-to-primitive map. The application of these neural networks to simple benchmark problems show that both approaches improve over traditional root finders with tabular equation-of-state and multi-dimensional interpolations. In particular, the neural networks for the conservative-to-primitive map accelerate the variable recovery by more than an order of magnitude over standard methods while maintaining accuracy. Neural networks are thus an interesting option to improve the speed and robustness of relativistic hydrodynamics algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا