ﻻ يوجد ملخص باللغة العربية
We give an algorithm for calculating the RO(S^1)-graded TR-groups of F_p, completing the calculation started by the second author. We also calculate the RO(S^1)-graded TR-groups of Z with mod p coefficients and of the Adams summand ell of connective complex K-theory with V(1)-coefficients. Some of these calculations are used elsewhere to compute the algebraic K-theory of certain Z-algebras.
The main result of this paper is the computation of TR^n_{alpha}(F_p;p) for alpha in R(S^1). These R(S^1)-graded TR-groups are the equivariant homotopy groups naturally associated to the S^1-spectrum THH(F_p), the topological Hochschild S^1-spectrum.
We completely calculate the $RO(G)$-graded coefficients of ordinary equivariant cohomology where $G$ is the dihedral group of order $2p$ for a prime $p>2$ both with constant and Burnside ring coefficients. The authors first proved it for $p=3$ and th
This thesis consists of two main parts. In the second part, we recall how a description of local coefficients that Eilenberg introduced in the 1940s leads to spectral sequences for the computation of homology and cohomology with local coefficients. W
We give a topological interpretation of the highest weight representations of Kac-Moody groups. Given the unitary form G of a Kac-Moody group (over C), we define a version of equivariant K-theory, K_G on the category of proper G-CW complexes. We then
We study the homotopy type of the space of the unitary group $operatorname{U}_1(C^ast_u(|mathbb{Z}^n|))$ of the uniform Roe algebra $C^ast_u(|mathbb{Z}^n|)$ of $mathbb{Z}^n$. We show that the stabilizing map $operatorname{U}_1(C^ast_u(|mathbb{Z}^n|))