ترغب بنشر مسار تعليمي؟ اضغط هنا

Equivariant local coefficients and the RO(G)-graded cohomology of classifying spaces

130   0   0.0 ( 0 )
 نشر من قبل Megan Shulman
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This thesis consists of two main parts. In the second part, we recall how a description of local coefficients that Eilenberg introduced in the 1940s leads to spectral sequences for the computation of homology and cohomology with local coefficients. We then show how to construct new equivariant analogues of these spectral sequences for RO(G)-graded Bredon homology and cohomology. Finally, we use these spectral sequences to complete a sample calculation, in which we use the equivariant Serre spectral sequence and the equivariant cohomology of complex projective spaces to compute the cohomology of the equivariant classifying space B_Cp O(2). However, to complete this sample computation, we need to know the cohomology of complex projective space. This calculation was done in a 1988 paper by Gaunce Lewis, but relies on a theorem whose proof as given was incorrect. We spend the first part of this thesis providing a correct proof and summarizing the results of Lewiss paper.



قيم البحث

اقرأ أيضاً

88 - Igor Kriz , Yunze Lu 2020
We completely calculate the $RO(G)$-graded coefficients of ordinary equivariant cohomology where $G$ is the dihedral group of order $2p$ for a prime $p>2$ both with constant and Burnside ring coefficients. The authors first proved it for $p=3$ and th en the second author generalized it to arbitrary $p$. These are the first such calculations for a non-abelian group.
The circle-equivariant spectrum MString_C is the equivariant analogue of the cobordism spectrum MU<6> of stably almost complex manifolds with c_1=c_2=0. Given a rational elliptic curve C, the second author has defined a ring T-spectrum EC representin g the associated T-equivariant elliptic cohomology. The core of the present paper is the construction, when C is a complex elliptic curve, of a map of ring T-spectra MString_C --> EC which is the rational equivariant analogue of the sigma orientation of Ando-Hopkins-Strickland. We support this by a theory of characteristic classes for calculation, and a conceptual description in terms of algebraic geometry. In particular, we prove a conjecture of the first author.
The equivariant cohomology of the classical configuration space $F(mathbb{R}^d,n)$ has been been of great interest and has been studied intensively starting with the classical papers by Artin (1925/1947) on the theory of braids, by Fox and Neuwirth ( 1962), Fadell and Neuwirth (1962), and Arnold (1969). We give a brief treatment of the subject from the beginnings to recent developments. However, we focus on the mod 2 equivariant cohomology algebras of the classical configuration space $F(mathbb{R}^d,n)$, as described in an influential paper by Hung (1990). We show with a new, detailed proof that his main result is correct, but that the arguments that were given by Hung on the way to his result are not, as are some of the intermediate results in his paper. This invalidates a paper by three of the present authors, Blagojevic, Luck & Ziegler (2016), who used a claimed intermediate result from Hung (1990) in order to derive lower bounds for the existence of $k$-regular and $ell$-skew embeddings. Using our new proof for Hungs main result, we get new lower bounds for existence of highly regular embeddings: Some of them agree with the previously claimed bounds, some are weaker.
86 - John Holler , Igor Kriz 2020
This note contains a generalization to $p>2$ of the authors previous calculations of the coefficients of $(mathbb{Z}/2)^n$-equivariant ordinary cohomology with coefficients in the constant $mathbb{Z}/2$-Mackey functor. The algberaic results by S.Kriz allow us to calculate the coefficients of the geometric fixed point spectrum $Phi^{(mathbb{Z}/p)^n}Hmathbb{Z}/p$, and more generally, the $mathbb{Z}$-graded coefficients of the localization of $Hmathbb{Z}/p_{(mathbb{Z}/p)^n}$ by inverting any chosen set of embeddings $S^0rightarrow S^{alpha_i}$ where $alpha_i$ are non-trivial irreducible representations. We also calculate the $RO(G)^+$-graded coefficients of $Hmathbb{Z}/p_{(mathbb{Z}/p)^n}$, which means the cohomology of a point indexed by an actual (not virtual) representation. (This is the non-derived part, which has a nice algebraic description.)
328 - Masaki Kameko 2014
For n>2, we prove the mod 2 cohomology of the finite Chevalley group Spin_n(F_q) is isomorphic to that of the classifying space of the loop group of the spin group Spin(n).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا