ترغب بنشر مسار تعليمي؟ اضغط هنا

The Anisotropic Spatial Distribution of Hypervelocity Stars

181   0   0.0 ( 0 )
 نشر من قبل Warren R. Brown
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Warren R. Brown




اسأل ChatGPT حول البحث

We study the distribution of angular positions and angular separations of unbound hypervelocity stars (HVSs). HVSs are spatially anisotropic at the 3-sigma level. The spatial anisotropy is significant in Galactic longitude, not in latitude, and the inclusion of lower velocity, possibly bound HVSs reduces the significance of the anisotropy. We discuss how the observed distribution of HVSs may be linked to their origin. In the future, measuring the distribution of HVSs in the southern sky will provide additional constraints on the spatial anisotropy and the origin of HVSs.



قيم البحث

اقرأ أيضاً

83 - Cuihua Du , Hefan Li , Yepeng Yan 2019
Base on about 4,500 large tangential velocity ($V_mathrm{tan}>0.75V_mathrm{esc}$) with high-precision proper motions and $5sigma$ parallaxes in Gaia DR2 5D information derived from parallax and proper motion, we identify more than 600 high velocity s tars with $50%$ unbound probability. Of these, 28 nearby (less than 6 kpc) late-type Hypervelocity stars (HVSs) with over $99%$ possibility of unbound are discovered. In order to search for the unbound stars from the full Gaia DR2 6D phase space information derived from parallax, proper motion and radial velocity, we also identify 28 stars from the total velocity ($V_mathrm{gc}>0.75V_mathrm{esc}$) that have probabilities greater than $50%$ of being unbound from the Galaxy. Of these, only three have a nearly $99%$ probabilities of being unbound. On the whole HVSs subsample, there is 12 sources reported by other surveys. We study the spatial distribution of angular positions and angular separation of HVSs. We find the unbound HVSs are spatially anisotropic that is most significant in the Galactic longitude at more than $3sigma$ level, and lower unbound probability HVSs are systematically more isotropic. The spatial distribution can reflect the origin of HVSs and we discuss the possible origin link with the anisotropy.
415 - Warren R. Brown 2007
Hypervelocity stars (HVSs) are stars ejected completely out of the Milky Way by three-body interactions with the massive black hole in the Galactic center. We describe 643 new spectroscopic observations from our targeted survey for HVSs. We find a si gnificant (3.5 sigma) excess of B-type stars with large velocities +275<v_rf<450 km/s and distances d>10 kpc that are most plausibly explained as a new class of HVSs: stars ejected from the Galactic center on bound orbits. If a Galactic center ejection origin is correct, the distribution of HVSs on the sky should be anisotropic for a survey complete to a fixed limiting apparent magnitude. The unbound HVSs in our survey have a marginally anisotropic distribution on the sky, consistent with the Galactic center ejection picture.
We present an investigation of the known sample of runaway stars. The orbits of these stars are traced back to their origin in the Galactic disc. The velocity distribution of these stars is compared to theoretical predictions. We conclude that the ma jority of stars is well explained by the standard binary ejection mechanism (BEM) and the dynamical ejection mechanism (DEM). However, we find a sample of ten stars which has ejection velocities in excess of those predicted by standard scenarios. We discuss how these can be explained by a variant of the BEM. This mechanism can create runaway stars exceeding the Galactic escape velocity (known as hypervelocity stars). The number of runaway stars in our Galaxy is estimated and compared to the known sample of high mass X-ray binaries, whose formation is linked to the BEM channel.
91 - Warren R. Brown 2018
We use new Gaia measurements to explore the origin of the highest velocity stars in the Hypervelocity Star Survey. The measurements reveal a clear pattern in the B-type stars. Halo stars dominate the sample at speeds about 100 km/s below Galactic esc ape velocity. Disk runaway stars have speeds up to 100 km/s above Galactic escape velocity, but most disk runaways are bound. Stars with speeds about 100 km/s above Galactic escape velocity originate from the Galactic center. Two bound stars may also originate from the Galactic center. Future Gaia measurements will enable a large, clean sample of Galactic center ejections for measuring the massive black hole ejection rate of hypervelocity stars, and for constraining the mass distribution of the Milky Way dark matter halo.
97 - Douglas Boubert 2018
Hypervelocity stars are intriguing rare objects traveling at speeds large enough to be unbound from the Milky Way. Several mechanisms have been proposed for producing them, including the interaction of the Galaxys super-massive black hole (SMBH) with a binary; rapid mass-loss from a companion to a star in a short-period binary; the tidal disruption of an infalling galaxy and finally ejection from the Large Magellanic Cloud. While previously discovered high-velocity early-type stars are thought to be the result of an interaction with the SMBH, the origin of high-velocity late type stars is ambiguous. The second data release of Gaia (DR2) enables a unique opportunity to resolve this ambiguity and determine whether any late-type candidates are truly unbound from the Milky Way. In this paper, we utilize the new proper motion and velocity information available from DR2 to re-evaluate a collection of historical data compiled on the newly-created Open Fast Stars Catalog. We find that almost all previously-known high-velocity late-type stars are most likely bound to the Milky Way. Only one late-type object (LAMOST J115209.12+120258.0) is unbound from the Galaxy. Performing integrations of orbital histories, we find that this object cannot have been ejected from the Galactic centre and thus may be either debris from the disruption of a satellite galaxy or a disc runaway.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا