ﻻ يوجد ملخص باللغة العربية
Magnetostatic spin wave dispersion and loss are measured in micron scale spin wave-guides in ferromagnetic, metallic CoTaZr. Results are in good agreement with model calculations of spin wave dispersion and up to three different modes are identified. Attenuation lengths of the order of 3 microns are several of orders of magnitude shorter than that predicted from eddy currents in these thin wires.
Magnetostatic spin wave dispersion and loss are measured in micron scale spin wave-guides in ferromagnetic, metallic CoTaZr. Results are in good agreement with model calculations of spin wave dispersion. The measured attenuation lengths, of the order
The dipolar (magnetostatic) interaction dominates the behavior of spin waves in magnetic films in the long-wavelength regime. In an in-plane magnetized film, volume modes exist with a negative group velocity (backward volume magnetostatic spin waves)
Recent neutron scattering measurements reveal spin and charge ordering in the half-doped nickelate, La$_{3/2}$ Sr$_{1/2}$ NiO$_4$. Many of the features of the magnetic excitations have been explained in terms of the spin waves of diagonal stripes wit
Spin wave dispersion in the metallic antiferromagnet Mn$_3$Pt was investigated just above the order-order transition temperature by using the inelastic neutron scattering technique. The spin wave dispersion at $T = 400$ K along [100], [110] and [111]
Spin waves are investigated in Yttrium Iron Garnet (YIG) waveguides with a thickness of 39 nm and widths ranging down to 50 nm, i.e., with aspect ratios thickness over width approaching unity, using Brillouin Light Scattering spectroscopy. The experi