ﻻ يوجد ملخص باللغة العربية
Dynamo action owing to helically forced turbulence and large-scale shear is studied using direct numerical simulations. The resulting magnetic field displays propagating wave-like behavior. This behavior can be modelled in terms of an alphaOmega dynamo. In most cases super-equipartition fields are generated. By varying the fraction of helicity of the turbulence the regeneration of poloidal fields via the helicity effect (corresponding to the alpha-effect) is regulated. The saturation level of the magnetic field in the numerical models is consistent with a linear dependence on the ratio of the fractional helicities of the small and large-scale fields, as predicted by a simple nonlinear mean-field model. As the magnetic Reynolds number (Rm) based on the wavenumber of the energy-carrying eddies is increased from 1 to 180, the cycle frequency of the large-scale field is found to decrease by a factor of about 6 in cases where the turbulence is fully helical. This is interpreted in terms of the turbulent magnetic diffusivity, which is found to be only weakly dependent on Rm.
The evolution of magnetic fields is studied using simulations of forced helical turbulence with strong imposed shear. After some initial exponential growth, the magnetic field develops a large scale travelling wave pattern. The resulting field struct
We present nonlinear mean-field alpha-Omega dynamo simulations in spherical geometry with simplified profiles of kinematic alpha effect and shear. We take magnetic helicity evolution into account by solving a dynamical equation for the magnetic alpha
A simple explicit example of a Roberts-type dynamo is given in which the alpha-effect of mean-field electrodynamics exists in spite of point-wise vanishing kinetic helicity of the fluid flow. In this way it is shown that alpha-effect dynamos do not n
Identifying generic physical mechanisms responsible for the generation of magnetic fields and turbulence in differentially rotating flows is fundamental to understand the dynamics of astrophysical objects such as accretion disks and stars. In this pa
The motivation for considering distributed large scale dynamos in the solar context is reviewed in connection with the magnetic helicity constraint. Preliminary accounts of 3-dimensional direct numerical simulations (in spherical shell segments) and