ﻻ يوجد ملخص باللغة العربية
Identifying generic physical mechanisms responsible for the generation of magnetic fields and turbulence in differentially rotating flows is fundamental to understand the dynamics of astrophysical objects such as accretion disks and stars. In this paper, we discuss the concept of subcritical dynamo action and its hydrodynamic analogue exemplified by the process of nonlinear transition to turbulence in non-rotating wall-bounded shear flows. To illustrate this idea, we describe some recent results on nonlinear hydrodynamic transition to turbulence and nonlinear dynamo action in rotating shear flows pertaining to the problem of turbulent angular momentum transport in accretion disks. We argue that this concept is very generic and should be applicable to many astrophysical problems involving a shear flow and non-axisymmetric instabilities of shear-induced axisymmetric toroidal velocity or magnetic fields, such as Kelvin-Helmholtz, magnetorotational, Tayler or global magnetoshear instabilities. In the light of several recent numerical results, we finally suggest that, similarly to a standard linear instability, subcritical MHD dynamo processes in high-Reynolds number shear flows could act as a large-scale driving mechanism of turbulent flows that would in turn generate an independent small-scale dynamo.
We find and investigate via numerical simulations self-sustained two-dimensional turbulence in a magnetohydrodynamic flow with a maximally simple configuration: plane, noninflectional (with a constant shear of velocity) and threaded by a parallel uni
The evolution of magnetic fields is studied using simulations of forced helical turbulence with strong imposed shear. After some initial exponential growth, the magnetic field develops a large scale travelling wave pattern. The resulting field struct
Dynamo action owing to helically forced turbulence and large-scale shear is studied using direct numerical simulations. The resulting magnetic field displays propagating wave-like behavior. This behavior can be modelled in terms of an alphaOmega dyna
We present nonlinear mean-field alpha-Omega dynamo simulations in spherical geometry with simplified profiles of kinematic alpha effect and shear. We take magnetic helicity evolution into account by solving a dynamical equation for the magnetic alpha
Stellar radiative zones are typically assumed to be motionless in standard models of stellar structure but there is sound theoretical and observational evidence that this cannot be the case. We investigate by direct numerical simulations a three-dime