ﻻ يوجد ملخص باللغة العربية
The apparent position of the origin (core) of extragalactic radio jets shifts with the observing frequency, owing to synchrotron self-absorption and external absorption. One of the largest core shifts was detected by us in the quasar 0850+581 between 2 and 8 GHz. We have followed this up recently by a dedicated VLBA experiment at 5, 8, 15, 24, and 43 GHz. First results from this study enabled estimating the absolute geometry and physical conditions in the parsec-scale jet origin.
We present the first multi-frequency VLBA study of the quasar 0850+581 which appears to have a two-sided relativistic jet.Apparent velocity in the approaching jet changes from 3.4c to 7c with the separation from the core. The jet-to-counter-jet ratio
We combine VLT/ISAAC NIR spectroscopy with archival HST/WFPC2 and HST/NICMOS imaging to study the central 20x20 of M83. Our NIR indices for clusters in the circumnuclear star-burst region are inconsistent with simple instantaneous burst models. Howev
Spacetime and internal symmetries can be used to severely restrict the form of the equations for the fundamental laws of physics. The success of this approach in the context of general relativity and particle physics motivates the conjecture that sym
Malin 1, being a class of giant low surface galaxies, continues to surprise us even today. The HST/F814W observation has shown that the central region of Malin 1 is more like a normal SB0/a galaxy, while the rest of the disk has the characteristic of
The Andromeda Galaxy (M31) is the nearest grand-design spiral galaxy. Thus far most studies in the radio regime concentrated on the 10 kpc ring. The central region of M31 has significantly different properties than the outer parts: The star formation