ﻻ يوجد ملخص باللغة العربية
We show that a 2+1 dimensional discrete surface growth model exhibiting Kardar-Parisi-Zhang (KPZ) class scaling can be mapped onto a two dimensional conserved lattice gas model of directed dimers. In case of KPZ height anisotropy the dimers follow driven diffusive motion. We confirm by numerical simulations that the scaling exponents of the dimer model are in agreement with those of the 2+1 dimensional KPZ class. This opens up the possibility of analyzing growth models via reaction-diffusion models, which allow much more efficient computer simulations.
We show that d+1-dimensional surface growth models can be mapped onto driven lattice gases of d-mers. The continuous surface growth corresponds to one dimensional drift of d-mers perpendicular to the (d-1)-dimensional plane spanned by the d-mers. Thi
The Kardar-Parisi-Zhang (KPZ) universality class describes the coarse-grained behavior of a wealth of classical stochastic models. Surprisingly, it was recently conjectured to also describe spin transport in the one-dimensional quantum Heisenberg mod
We study the dynamics of vortices in a two-dimensional, non-equilibrium system, described by the compact Kardar-Parisi-Zhang equation, after a sudden quench across the critical region. Our exact numerical solution of the phase-ordering kinetics shows
Surface growth governed by the Kardar-Parisi-Zhang (KPZ) equation in dimensions higher than two undergoes a roughening transition from smooth to rough phases with increasing the nonlinearity. It is also known that the KPZ equation can be mapped onto
Circular KPZ interfaces spreading radially in the plane have GUE Tracy-Widom (TW) height distribution (HD) and Airy$_2$ spatial covariance, but what are their statistics if they evolve on the surface of a different background space, such as a bowl, a