ﻻ يوجد ملخص باللغة العربية
One of the most important parameters in the XRB (X-ray background) synthesis models is the average efficiency of accretion onto SMBH (super-massive black holes). This can be inferred from the shape of broad relativistic Fe lines seen in X-ray spectra of AGN (active galactic nuclei). Several studies have tried to measure the mean Fe emission properties of AGN at different depths with very different results. We compute the mean Fe emission from a large and representative sample of AGN X-ray spectra up to redshift ~ 3.5. We developed a method of computing the rest-frame X-ray average spectrum and applied it to a large sample (more than 600 objects) of type 1 AGN from two complementary medium sensitivity surveys based on XMM-Newton data, the AXIS and XWAS samples. This method makes use of medium-to-low quality spectra without needing to fit complex models to the individual spectra but with computing a mean spectrum for the whole sample. Extensive quality tests were performed by comparing real to simulated data, and a significance for the detection of any feature over an underlying continuum was derived. We detect with a 99.9% significance an unresolved Fe K-alpha emission line around 6.4 keV with an EW ~ 90 eV, but we find no compelling evidence of any significant broad relativistic emission line in the final average spectrum. Deviations from a power law around the narrow line are best represented by a reflection component arising from cold or low-ionization material. We estimate an upper limit for the EW of any relativistic line of 400 eV at a 3 sigma confidence level. We also marginally detect the so-called Iwasawa-Taniguchi effect on the EW for the unresolved emission line, which appears weaker for higher luminosity AGN.
We study the influence of gravitational microlensing on the AGN Fe K-alpha line confirming that unexpected enhancements recently detected in the iron line of some AGNs can be produced by this effect. We use a ray tracing method to study the influence
We report the discovery of kpc-scale diffuse emission in both the hard continuum (3-6 keV) and in the Fe K alpha line in the Compton Thick (CT) Seyfert galaxy ESO428-G014. This extended hard component contains at least ~24% of the observed 3-8 keV em
The properties of the relativistically broadened Fe K alpha line emitted in Active Galactic Nuclei (AGN) are still debated among the AGN community. Recent works seem to exclude that the broad Fe line is a common feature of AGN. The analysis of a larg
We present a rest-frame spectral stacking analysis of ~1000 X-ray sources detected in the XMM-COSMOS field in order to investigate the iron K line properties of active galaxies beyond redshift z~1. In Type I AGN that have a typical X-ray luminosity o
The analysis of the Chandra X-ray observations of the gravitationally lensed quasar RX J1131-1231 revealed the detection of multiple and energy-variable spectral peaks. The spectral variability is thought to result from the microlensing of the Fe K-a