ﻻ يوجد ملخص باللغة العربية
The analysis of the Chandra X-ray observations of the gravitationally lensed quasar RX J1131-1231 revealed the detection of multiple and energy-variable spectral peaks. The spectral variability is thought to result from the microlensing of the Fe K-alpha emission, selectively amplifying the emission from certain regions of the accretion disk with certain effective frequency shifts of the Fe K-alpha line emission. In this paper, we combine detailed simulations of the emission of Fe K-alpha photons from the accretion disk of a Kerr black hole with calculations of the effect of gravitational microlensing on the observed energy spectra. The simulations show that microlensing can indeed produce multiply peaked energy spectra. We explore the dependence of the spectral characteristics on black hole spin, accretion disk inclination, corona height, and microlensing amplification factor, and show that the measurements can be used to constrain these parameters. We find that the range of observed spectral peak energies of QSO RX J1131-1231 can only be reproduced for black hole inclinations exceeding 70 degree and for lamppost corona heights of less than 30 gravitational radii above the black hole. We conclude by emphasizing the scientific potential of studies of the microlensed Fe K$alpha$ quasar emission and the need for more detailed modeling that explores how the results change for more realistic accretion disk and corona geometries and microlensing magnification patterns. A full analysis should furthermore model the signal-to-noise ratio of the observations and the resulting detection biases.
The Chandra observations of several gravitationally lensed quasars show evidence for flux and spectral variability of the X-ray emission that is uncorrelated between images and is thought to result from the microlensing by stars in the lensing galaxy
We study the radial ionization structure at the surface of an X-ray illuminated accretion disk. We plot the expected iron K$alpha$ line energy as a function of the Eddington ratio and of the distance of the emitting matter from the central source, fo
Recent work has demonstrated the potential of gravitationally lensed quasars to extend measurements of black hole spin out to high-redshift with the current generation of X-ray observatories. Here we present an analysis of a large sample of 27 lensed
The centroid energy of the Fe K$alpha$ line has been used to identify the progenitors of supernova remnants (SNRs). These investigations generally considered the energy of the centroid derived from the spectrum of the entire remnant. Here we use {it
Low-mass X-ray binaries hosting a low-magnetised neutron star, which accretes matter via Roche-lobe overflow, are generally grouped in two classes, named Atoll and Z sources after the path described in their X-ray colour-colour diagrams. Scorpius X-1