ترغب بنشر مسار تعليمي؟ اضغط هنا

Bi-partite entanglement entropy in massive QFT with a boundary: the Ising model

221   0   0.0 ( 0 )
 نشر من قبل Olalla Castro Alvaredo
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we give an exact infinite-series expression for the bi-partite entanglement entropy of the quantum Ising model both with a boundary magnetic field and in infinite volume. This generalizes and extends previous results involving the present authors for the bi-partite entanglement entropy of integrable quantum field theories, which exploited the generalization of the form factor program to branch-point twist fields. In the boundary case, we isolate in a universal way the part of the entanglement entropy which is related to the boundary entropy introduced by Affleck and Ludwig, and explain how this relation should hold in more general QFT models. We provide several consistency checks for the validity of our form factor results, notably, the identification of the leading ultraviolet behaviour both of the entanglement entropy and of the two-point function of twist fields in the bulk theory, to a great degree of precision by including up to 500 form factor contributions.



قيم البحث

اقرأ أيضاً

143 - Benjamin Doyon 2008
Recently, Cardy, Castro Alvaredo and the author obtained the first exponential correction to saturation of the bi-partite entanglement entropy at large region length, in massive two-dimensional integrable quantum field theory. It only depends on the particle content of the model, and not on the way particles scatter. Based on general analyticity arguments for form factors, we propose that this result is universal, and holds for any massive two-dimensional model (also out of integrability). We suggest a link of this result with counting pair creations far in the past.
A rigorous proof is presented of the boundedness of the entanglement entropy of a block of spins for the ground state of the one-dimensional quantum Ising model with sufficiently strong transverse field. This is proved by a refinement of the argument s in the earlier work by the same authors (J. Statist. Phys. 131 (2008) 305-339). The proof is geometrical, and utilises a transformation to a model of classical probability called the continuum random-cluster model. Our method of proof is fairly robust, and applies also to certain disordered systems.
377 - M. R. Setare , M. Koohgard 2021
Previously we have studied the Generalized Minimal Massive Gravity (GMMG) in asymptotically $AdS_3$ background, and have shown that the theory is free of negative-energy bulk modes. Also we have shown GMMG avoids the aforementioned bulk-boundary unit arity clash. Here instead of $AdS_3$ space we consider asymptotically flat space, and study this model in the flat limit. The dual field theory of GMMG in the flat limit is a $BMS_3$ invariant field theory, dubbed (BMSFT) and we have BMS algebra asymptotically instead of Virasoro algebra. In fact here we present an evidence for this claim. Entanglement entropy of GMMG is calculated in the background in the flat null infinity. Our evidence for mentioned claim is the result for entanglement entropy in filed theory side and in the bulk (in the gravity side). At first using Cardy formula and Rindler transformation, we calculate entanglement entropy of BMSFT in three different cases. Zero temperature on the plane and on the cylinder, and non-zero temperature case. Then we obtain the entanglement entropy in the bulk. Our results in gravity side are exactly in agreement with field theory calculations.
By considering the continuum scaling limit of the $A_{4}$ RSOS lattice model of Andrews-Baxter-Forrester with integrable boundaries, we derive excited state TBA equations describing the boundary flows of the tricritical Ising model. Fixing the bulk w eights to their critical values, the integrable boundary weights admit a parameter $xi $ which plays the role of the perturbing boundary field $phi_{1,3}$ and induces the renormalization group flow between boundary fixed points. The boundary TBA equations determining the RG flows are derived in the $mathcal{B}_{(1,2)}to mathcal{B}_{(2,1)}$ example. The induced map between distinct Virasoro characters of the theory are specified in terms of distribution of zeros of the double row transfer matrix.
We use the image charge method to compute the trace of the heat kernel for a scalar field on a flat manifold with boundary, representing the trace by means of a worldline path integral and obtain useful non-iterative master formulae for n insertions of the scalar potential. We discuss possible extensions of the method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا