ﻻ يوجد ملخص باللغة العربية
A rigorous proof is presented of the boundedness of the entanglement entropy of a block of spins for the ground state of the one-dimensional quantum Ising model with sufficiently strong transverse field. This is proved by a refinement of the arguments in the earlier work by the same authors (J. Statist. Phys. 131 (2008) 305-339). The proof is geometrical, and utilises a transformation to a model of classical probability called the continuum random-cluster model. Our method of proof is fairly robust, and applies also to certain disordered systems.
We study the behavior of bipartite entanglement at fixed von Neumann entropy. We look at the distribution of the entanglement spectrum, that is the eigenvalues of the reduced density matrix of a quantum system in a pure state. We report the presence
The scattering amplitude in simple quantum graphs is a well-known process which may be highly complex. In this work, motivated by the Shannon entropy, we propose a methodology that associates to a graph a scattering entropy, which we call the average
Distribution and distillation of entanglement over quantum networks is a basic task for Quantum Internet applications. A fundamental question is then to determine the ultimate performance of entanglement distribution over a given network. Although th
We consider sequences of random quantum channels defined using the Stinespring formula with Haar-distributed random orthogonal matrices. For any fixed sequence of input states, we study the asymptotic eigenvalue distribution of the outputs through te
In finite dimensions, we provide characterizations of the quantum dynamical semigroups that do not decrease the von Neumann, the Tsallis and the Renyi entropies, as well as a family of functions of density operators strictly related to the Schatten n