ﻻ يوجد ملخص باللغة العربية
CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) is an experiment located at the Gran Sasso underground laboratory and aimed at the direct detection of dark matter in the form of WIMPs. The setup has just completed a one year commissioning run in 2007 and is presently starting a physics run with an increased target mass. Scintillating $mathrm{CaWO_4}$ single crystals, operated at temperatures of a few millikelvin, are used as target to detect the tiny nuclear recoil induced by a WIMP. The powerful background identification and rejection of $alpha$, e$^{-}$ and $gamma$ events is realized via the simultaneous measurement of a phonon and a scintillation signal generated in the $mathrm{CaWO_4}$ crystal. However, neutrons could still be misidentified as a WIMP signature. Therefore, a detailed understanding of the individual recoil behaviour in terms of phonon generation and scintillation light emission due to scattering on Ca, O or W nuclei, respectively, is mandatory. The only setup which allows to perform such measurements at the operating temperature of the CRESST detectors has been installed at the Maier-Leibnitz-Accelerator Laboratory in Garching and is presently being commissioned. The design of this neutron scattering facility is such that it can also be used for other target materials, e.g. $mathrm{ZnWO_4}$, $mathrm{PbWO_4}$ and others as foreseen in the framework of the future multitarget tonne-scale experiment EURECA (European Underground Rare Event Calorimeter Array).
Weakly Interacting Massive Particles (WIMPs) are candidates for non-baryonic Dark Matter. WIMPs are supposed to interact with baryonic matter via scattering off nuclei producing a nuclear recoil with energies up to a few 10 keV with a very low intera
The CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) and the EURECA (European Underground Rare Event Calorimeter Array) experiments are direct dark matter search experiments where cryogenic detectors are used to detect spin-inde
Radio-frequency reflectometry allows for fast and sensitive electrical readout of charge and spin qubits hosted in quantum dot devices coupled to resonant circuits. Optimizing readout, however, requires frequency tuning of the resonators and impedanc
Neutron scattering techniques offer a unique combination of structural and the dynamic information of atomic and molecular systems over a wide range of distances and times. The increasing complexity in science investigations driven by technological a
The half-life of the $alpha$ decaying nucleus $^{221}$Fr was determined in different environments, i.e. embedded in Si at 4 K, and embedded in Au at 4 K and about 20 mK. No differences in half-life for these different conditions were observed within