ترغب بنشر مسار تعليمي؟ اضغط هنا

Carbon Dioxide Production Responsibility on the Basis of comparing in Situ and mean CO2 Atmosphere Concentration Data

108   0   0.0 ( 0 )
 نشر من قبل Boyko Vachev
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The method is proposed for estimation of regional CO2 and other greenhouses and pollutants production responcibility. The comparison of CO2 local emissions reduction data with world CO2 atmosphere data will permit easy to judge for overall effect in curbing not only global warming but also chemical polution.



قيم البحث

اقرأ أيضاً

258 - Timothy J. Garrett 2009
Global Climate Models (GCMs) provide forecasts of future climate warming using a wide variety of highly sophisticated anthropogenic CO2 emissions models as input, each based on the evolution of four emissions drivers: population p, standard of living g, energy productivity (or efficiency) f and energy carbonization c. The range of scenarios considered is extremely broad, however, and this is a primary source of forecast uncertainty. Here, it is shown both theoretically and observationally how the evolution of the human system can be considered from a surprisingly simple thermodynamic perspective in which it is unnecessary to explicitly model two of the emissions drivers: population and standard of living. Specifically, the human system grows through a self-perpetuating feedback loop in which the consumption rate of primary energy resources stays tied to the historical accumulation of global economic production - or p times g - through a time-independent factor of 9.7 +/- 0.3 milliwatts per inflation-adjusted 1990 US dollar. This important constraint, and the fact that f and c have historically varied rather slowly, points towards substantially narrowed visions of future emissions scenarios for implementation in GCMs.
The space and ground-based observations have shown a lot of activities and instabilities in the atmosphere of the giant ice planet Neptune. Using the archival data of high resolution Atacama Large Millimeter/Submillimeter Array (ALMA) with band 7 obs ervation, we present the spectroscopic detection of the rotational emission line of sulfur dioxide (SO$_{2}$) at frequency $ u$ = 343.476 GHz with transition J=57$_{15,43}$$-$58$_{14,44}$. We also re-detect the emission line of carbon monoxide (CO) at frequency $ u$ = 345.795 GHz with transition J=3$-$2. The molecular lines of SO$_{2}$ and CO in the atmosphere of Nepure are detected with the $geq$4$sigma$ statistical significance. The statistical column density of SO$_{2}$ is N(SO$_{2}$) = 2.61$times$10$^{15}$ cm$^{-2}$ with rotational temperature $T_{SO_{2}}$ = 50 K and the statistical column density CO is N(CO) = 1.86$times$10$^{19}$ cm$^{-2}$ with $T_{CO}$ = 29 K. The typical mixing ratio in the atmosphere of Neptune for SO$_{2}$ is 1.24$times$10$^{-10}$ and CO is 0.88$times$10$^{-6}$. The SO$_{2}$ and CO gas in the atmosphere of Neptune may create due to Shoemaker-Levy 9 impacts in Jovian planets since 1994.
We present the results of full new calculation of radiocarbon 14C production in the Earth atmosphere, using a numerical Monte-Carlo model. We provide, for the first time, a tabulated 14C yield function for the energy of primary cosmic ray particles r anging from 0.1 to 1000 GeV/nucleon. We have calculated the global production rate of 14C, which is 1.64 and 1.88 atoms/cm2/s for the modern time and for the pre-industrial epoch, respectively. This is close to the values obtained from the carbon cycle reservoir inventory. We argue that earlier models overestimated the global 14C production rate because of outdated spectra of cosmic ray heavier nuclei. The mean contribution of solar energetic particles to the global 14C is calculated as about 0.25% for the modern epoch. Our model provides a new tool to calculate the 14C production in the Earths atmosphere, which can be applied, e.g., to reconstructions of solar activity in the past.
Social-distancing to combat the COVID-19 pandemic has led to widespread reductions in air pollutant emissions. Quantifying these changes requires a business as usual counterfactual that accounts for the synoptic and seasonal variability of air pollut ants. We use a machine learning algorithm driven by information from the NASA GEOS-CF model to assess changes in nitrogen dioxide (NO$_{2}$) and ozone (O$_{3}$) at 5,756 observation sites in 46 countries from January through June 2020. Reductions in NO$_{2}$ correlate with timing and intensity of COVID-19 restrictions, ranging from 60% in severely affected cities (e.g., Wuhan, Milan) to little change (e.g., Rio de Janeiro, Taipei). On average, NO$_{2}$ concentrations were 18% lower than business as usual from February 2020 onward. China experienced the earliest and steepest decline, but concentrations since April have mostly recovered and remained within 5% to the business as usual estimate. NO$_{2}$ reductions in Europe and the US have been more gradual with a halting recovery starting in late March. We estimate that the global NO$_{x}$ (NO+NO$_{2}$) emission reduction during the first 6 months of 2020 amounted to 2.9 TgN, equivalent to 5.1% of the annual anthropogenic total. The response of surface O$_{3}$ is complicated by competing influences of non-linear atmospheric chemistry. While surface O$_{3}$ increased by up to 50% in some locations, we find the overall net impact on daily average O$_{3}$ between February - June 2020 to be small. However, our analysis indicates a flattening of the O$_{3}$ diurnal cycle with an increase in night time ozone due to reduced titration and a decrease in daytime ozone, reflecting a reduction in photochemical production. The O$_{3}$ response is dependent on season, time scale, and environment, with declines in surface O$_{3}$ forecasted if NO$_{x}$ emission reductions continue.
Recent advances in the high sensitivity spectroscopy have made it possible, in combination with accurate theoretical predictions, to observe for the first time very weak electric quadrupole transitions in a polar polyatomic molecule of water. Here we present accurate theoretical predictions of the complete quadrupole ro-vibrational spectrum of a non-polar molecule CO$_2$, important in atmospheric and astrophysical applications. Our predictions are validated by recent cavity enhanced absorption spectroscopy measurements and are used to assign few weak features in the recent ExoMars ACS MIR spectroscopic observations of the martian atmosphere. Predicted quadrupole transitions appear in some of the mid-infrared CO$_2$ and water vapor transparency regions, making them important for detection and characterization of the minor absorbers in water- and CO$_2$-rich environments, such as present in the atmospheres of Earth, Venus and Mars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا