ﻻ يوجد ملخص باللغة العربية
A new approximation scheme to the centrifugal term is proposed to obtain the $l eq 0$ bound-state solutions of the Schr{o}dinger equation for an exponential-type potential in the framework of the hypergeometric method. The corresponding normalized wave functions are also found in terms of the Jacobi polynomials. To show the accuracy of the new proposed approximation scheme, we calculate the energy eigenvalues numerically for arbitrary quantum numbers $n$ and $l$ with two different values of the potential parameter $sigma_{text{0}}.$ Our numerical results are of high accuracy like the other numerical results obtained by using program based on a numerical integration procedure for short-range and long-range potentials. The energy bound-state solutions for the s-wave ($l=0$) and $sigma_{0}=1$ cases are given.
The Schr{o}dinger equation in $D$-dimensions for the Manning-Rosen potential with the centrifugal term is solved approximately to obtain bound states eigensolutions (eigenvalues and eigenfunctions). The Nikiforov-Uvarov(NU) method is used in the calc
Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.
The solvability of The Dirac equation is studied for the exponential-type potentials with the pseudospin symmetry by using the parametric generalization of the Nikiforov-Uvarov method. The energy eigenvalue equation, and the corresponding Dirac spino
Analytical solutions of the Klein-Gordon equation are obtained by reducing the radial part of the wave equation to a standard form of a second order differential equation. Differential equations of this standard form are solvable in terms of hypergeo
The approximated energy eigenvalues and the corresponding eigenfunctions of the spherical Woods-Saxon effective potential in $D$ dimensions are obtained within the new improved quantization rule for all $l$-states. The Pekeris approximation is used t