ترغب بنشر مسار تعليمي؟ اضغط هنا

An Algebraic Method for the Analytical Solutions of the Klein-Gordon equation for any angular momentum for some diatomic potentials

360   0   0.0 ( 0 )
 نشر من قبل Ramazan Sever
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Analytical solutions of the Klein-Gordon equation are obtained by reducing the radial part of the wave equation to a standard form of a second order differential equation. Differential equations of this standard form are solvable in terms of hypergeometric functions and we give an algebraic formulation for the bound state wave functions and for the energy eigenvalues. This formulation is applied for the solutions of the Klein-Gordon equation with some diatomic potentials.



قيم البحث

اقرأ أيضاً

Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.
Approximate analytical solutions of the Dirac equation are obtained for some diatomic molecular potentials plus a tensor interaction with spin and pseudospin symmetries with any angular momentum. We find the energy eigenvalue equations in the closed form and the spinor wave functions by using an algebraic method. We also perform numerical calculations for the Poschl-Teller potential to show the effect of the tensor interaction. Our results are consistent with ones obtained before.
The Klein-Gordon equation is solved approximately for the Hulth{e}n potential for any angular momentum quantum number $ell$ with the position-dependent mass. Solutions are obtained reducing the Klein-Gordon equation into a Schr{o}dinger-like differen tial equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov method is used in the calculations to get an energy eigenvalue and and the wave functions. It is found that the results in the case of constant mass are in good agreement with the ones obtained in the literature.
The energy eigenvalues and the corresponding eigenfunctions of the one-dimensional Klein-Gordon equation with q-parameter Poschl-Teller potential are analytically obtained within the position-dependent mass formalism. The parametric generalization of the Nikiforov-Uvarov method is used in the calculations by choosing a mass distribution.
146 - Madalina Boca 2011
We present an elementary proof based on a direct calculation of the property of completeness at constant time of the solutions of the Klein-Gordon equation for a charged particle in a plane wave electromagnetic field. We also review different forms o f the orthogonality and completeness relations previously presented in the literature and we discuss the possibility to construct the Feynman propagator for the particle in a plane-wave laser pulse as an expansion in terms of Volkov solutions. We show that this leads to a rigorous justification for the expression of the transition amplitude, currently used in the literature, for a class of laser assisted or laser induced processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا