ﻻ يوجد ملخص باللغة العربية
We report on progress in ion placement into silicon devices with scanning probe alignment. The device is imaged with a scanning force microscope (SFM) and an aligned argon beam (20 keV, 36 keV) is scanned over the transistor surface. Holes in the lever of the SFM tip collimate the argon beam to sizes of 1.6 um and 100 nm in diameter. Ion impacts upset the channel current due to formation of positive charges in the oxide areas. The induced changes in the source-drain current are recorded in dependence of the ion beam position in respect to the FinFET. Maps of local areas responding to the ion beam are obtained.
A simple yet highly reproducible method to suppress contamination of graphene at low temperature inside the cryostat is presented. The method consists of applying a current of several mA through the graphene device, which is here typically a few $mu$
Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the $p$-$n$ junction depletion regio
Investigations of the complex behavior of the magnetization of manganese arsenide thin films due to defects induced by irradiation of slow heavy ions are presented. In addition to the thermal hysteresis suppression already highlighted in M. Trassinel
The response in capacitance to low external magnetic fields (up to 0.1 T) of suspensions of spherical magnetic nanoparticles, single-wall carbon nanotubes (SWCNT), SWCNT functionalized with carboxyl group (SWCNT-COOH) and SWCNT functionalized with Fe
A study of damages caused by gallium focused ion beam (FIB) into III-V compounds is presented. Potential damages caused by local heating, ion implantation, and selective sputtering are presented. Preliminary analysis shows that local heating is negli