ﻻ يوجد ملخص باللغة العربية
A simple yet highly reproducible method to suppress contamination of graphene at low temperature inside the cryostat is presented. The method consists of applying a current of several mA through the graphene device, which is here typically a few $mu$m wide. This ultra-high current density is shown to remove contamination adsorbed on the surface. This method is well suited for quantum electron transport studies of undoped graphene devices, and its utility is demonstrated here by measuring the anomalous quantum Hall effect.
We report on progress in ion placement into silicon devices with scanning probe alignment. The device is imaged with a scanning force microscope (SFM) and an aligned argon beam (20 keV, 36 keV) is scanned over the transistor surface. Holes in the lev
Since its first isolation in 2004, graphene has been found to host a plethora of unusual electronic transport phenomena, making it a fascinating system for fundamental studies in condensed-matter physics as well as offering tremendous opportunities f
We present a general theory of current deviations in straight current carrying wires with random imperfections, which quantitatively explains the recent observations of organized patterns of magnetic field corrugations above micron-scale evaporated w
Top-gated graphene transistors operating at high frequencies (GHz) have been fabricated and their characteristics analyzed. The measured intrinsic current gain shows an ideal 1/f frequency dependence, indicating an FET-like behavior for graphene tran
Antiferromagnets are robust to external electric and magnetic fields, and hence are seemingly uncontrollable. Recent studies, however, realized the electrical manipulations of antiferromagnets by virtue of the antiferromagnetic Edelstein effect. We p