ﻻ يوجد ملخص باللغة العربية
A series of polycrystalline SmO1-xFxFeAs bulks (x=0.15, 0.2, 0.3 and 0.4) were prepared by the conventional solid state reaction. Resistivity, susceptibility, magnetic hysteresis, critical current density and microstructure of these samples have been investigated. It is found that critical transition temperature Tc increases steadily with increasing fluorine content, with the highest onset Tc=53 K at x=0.4. On the other hand, the superconductivity seems correlated with lattice constants; that is, Tc rises with the shrinkage of a-axis while resistivity increases with the enlargement of c-axis. A global critical current density of 1.1x10^4 A/cm^2 at 5 K in self field was achieved in the purest sample. A method of characterization of inter-grain current density is proposed. This method gives an inter-grain Jc of 3.6x10^3 A/cm^2 at 5 K in self field, in contrast to the intra-grain Jc of 10^6 A/cm^2. The effect of composition gradients on the inter-grain Jc in SmO1-xFxFeAs is also discussed.
A safe, simple and easily scaleable one-step sintering method is proposed to fabricate newly discovered superconductors of SmO1-xFxFeAs. Superconducting transition with the onset temperature of 54.6 K and high critical fields Hc2(0) >=200 T were conf
We demonstrate that Ta sheathed SmO1-xFxFeAs wires were successfully fabricated by the powder-in-tube (PIT) method for the first time. Structural analysis by mean of x-ray diffraction shows that the main phase of SmO1-xFxFeAs was obtained by this syn
A series of polycrystalline SmFeAs1-xOx bulks was prepared to systematically investigate the influence of sample density on flux pinning properties. Different sample densities were achieved by controlling the pelletizing pressure. The superconducting
A novel method to prepare bulk Fe(Se0.5Te0.5) samples is presented, based on a melting process and a subsequent annealing treatment. With respect to the standard sintering technique, it produces much more homogeneous and denser samples, characterized
We report a direct current transport study of the local intergrain connections in a polycrystalline SmFeAsO0.85 (Sm1111) bulk, for which we earlier estimated significant intergranular critical current density Jc. Our combined low temperature laser sc