ﻻ يوجد ملخص باللغة العربية
The paper develops a method for discrete computational Fourier analysis of functions defined on quasicrystals and other almost periodic sets. A key point is to build the analysis around the emerging theory of quasicrystals and diffraction in the setting on local hulls and dynamical systems. Numerically computed approximations arising in this way are built out of the Fourier module of the quasicrystal in question, and approximate their target functions uniformly on the entire infinite space. The methods are entirely group theoretical, being based on finite groups and their duals, and they are practical and computable. Examples of functions based on the standard Fibonacci quasicrystal serve to illustrate the method (which is applicable to all quasicrystals modeled on the cut and project formalism).
Hamiltonian operators are used in the theory of integrable partial differential equations to prove the existence of infinite sequences of commuting symmetries or integrals. In this paper it is illustrated the new Reduce package cde for computations o
We consider a Dirac operator with a dislocation potential on the real line. The dislocation potential is a fixed periodic potential on the negative half-line and the same potential but shifted by real parameter $t$ on the positive half-line. Its spec
In this paper we prove the existence of asymptotic moments, and an estimate on the tails of the limiting distribution, for a specific class of almost periodic functions. Then we introduce the hyperbolic circle problem, proving an estimate on the asym
Recently, Keating, Linden, and Wells cite{KLW} showed that the density of states measure of a nearest-neighbor quantum spin glass model is approximately Gaussian when the number of particles is large. The density of states measure is the ensemble ave
The goal of this expository article is a fairly self-contained account of some averaging processes of functions along sequences of the form $(alpha^n x)^{}_{ninmathbb{N}}$, where $alpha$ is a fixed real number with $| alpha | > 1$ and $xinmathbb{R}$