ترغب بنشر مسار تعليمي؟ اضغط هنا

Periodic Dirac operator with dislocation

59   0   0.0 ( 0 )
 نشر من قبل Evgeny Korotyaev
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a Dirac operator with a dislocation potential on the real line. The dislocation potential is a fixed periodic potential on the negative half-line and the same potential but shifted by real parameter $t$ on the positive half-line. Its spectrum has an absolutely continuous part (the union of bands separated by gaps) plus at most two eigenvalues in each non-empty gap. Its resolvent admits a meromorphic continuation onto a two-sheeted Riemann surface. We prove that it has only two simple poles on each open gap: on the first sheet (an eigenvalue) or on the second sheet (a resonance). These poles are called states and there are no other poles. We prove: 1) each state is a continuous function of $t$, and we obtain its local asymptotic; 2) for each $t$ states in the gap are distinct; 3) in general, a state is non-monotone function of $t$ but it can be monotone for specific potentials; 4) we construct examples of operators, which have: a) one eigenvalue and one resonance in any finite number of gaps; b) two eigenvalues or two resonances in any finite number of gaps; c) two static virtual states in one gap.



قيم البحث

اقرأ أيضاً

Weyl points are degenerate points on the spectral bands at which energy bands intersect conically. They are the origins of many novel physical phenomena and have attracted much attention recently. In this paper, we investigate the existence of such p oints in the spectrum of the 3-dimensional Schr{o}dinger operator $H = - Delta +V(textbf{x})$ with $V(textbf{x})$ being in a large class of periodic potentials. Specifically, we give very general conditions on the potentials which ensure the existence of 3-fold Weyl points on the associated energy bands. Different from 2-dimensional honeycomb structures which possess Dirac points where two adjacent band surfaces touch each other conically, the 3-fold Weyl points are conically intersection points of two energy bands with an extra band sandwiched in between. To ensure the 3-fold and 3-dimensional conical structures, more delicate, new symmetries are required. As a consequence, new techniques combining more symmetries are used to justify the existence of such conical points under the conditions proposed. This paper provides comprehensive proof of such 3-fold Weyl points. In particular, the role of each symmetry endowed to the potential is carefully analyzed. Our proof extends the analysis on the conical spectral points to a higher dimension and higher multiplicities. We also provide some numerical simulations on typical potentials to demonstrate our analysis.
We study the spectrum of the linear operator $L = - partial_{theta} - epsilon partial_{theta} (sin theta partial_{theta})$ subject to the periodic boundary conditions on $theta in [-pi,pi]$. We prove that the operator is closed in $L^2([-pi,pi])$ wit h the domain in $H^1_{rm per}([-pi,pi])$ for $|epsilon| < 2$, its spectrum consists of an infinite sequence of isolated eigenvalues and the set of corresponding eigenfunctions is complete. By using numerical approximations of eigenvalues and eigenfunctions, we show that all eigenvalues are simple, located on the imaginary axis and the angle between two subsequent eigenfunctions tends to zero for larger eigenvalues. As a result, the complete set of linearly independent eigenfunctions does not form a basis in $H^1_{rm per}([-pi,pi])$.
125 - Karen Yagdjian 2020
In this article we give sufficient conditions for the generalized Dirac operator to obey the incomplete Huygens principle, as well as necessary and sufficient conditions to obey the Huygens principle by the Dirac operator in the curved spacetime of t he Friedmann-Lema^itre-Robertson-Walker models of cosmology.
265 - Monika Winklmeier 2008
The operator associated to the angular part of the Dirac equation in the Kerr-Newman background metric is a block operator matrix with bounded diagonal and unbounded off-diagonal entries. The aim of this paper is to establish a variational principle for block operator matrices of this type and to derive thereof upper and lower bounds for the angular operator mentioned above. In the last section, these analytic bounds are compared to numerical values from the literature.
83 - Karen Yagdjian 2020
The equation of the spin-$frac{1}{2}$ particles in the Friedmann-Lema^itre-Robertson-Walker spacetime is investigated. The retarded and advanced fundamental solutions to the Dirac operator and generalized Dirac operator as well as the fundamental sol utions to the Cauchy problem are written in explicit form via the fundamental solution of the wave equation in the Minkowski spacetime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا