ترغب بنشر مسار تعليمي؟ اضغط هنا

A fusion of the LAPW and the LMTO methods: the augmented plane wave plus muffin-tin orbital (PMT) method

127   0   0.0 ( 0 )
 نشر من قبل Tako Kotani
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new full-potential method to solve the one-body problem, for example, in the local density approximation. The method uses the augmented plane waves (APWs) and the generalized muffin-tin orbitals (MTOs) together as basis sets to represent the eigenfunctions. Since the MTOs can efficiently describe localized orbitals, e.g, transition metal 3$d$ orbitals, the total energy convergence with basis size is drastically improved in comparison with the linearized APW method. Required parameters to specify MTOs are given by atomic calculations in advance. Thus the robustness, reliability, easy-of-use, and efficiency at this method can be superior to the linearized APW and MTO methods. We show how it works in typical examples, Cu, Fe, Li, SrTiO$_3$, and GaAs.



قيم البحث

اقرأ أيضاً

88 - M. Alouani , J. M. Wills 1999
The most popular electronic structure method, the linear muffin-tin orbital method (LMTO), in its full-potential (FP) and relativistic forms has been extended to calculate the spectroscopic properties of materials form first principles, i.e, optical spectra, x-ray magnetic circular dichroism (XMCD) and magneto-optical kerr effect (MOKE). The paper describes an overview of the FP-LMTO basis set and the calculation of the momentum matrix elements. Some applications concerning the computation of optical properties of semiconductors and XMCD spectra of transition metal alloys are reviewed.
This paper summarises the theory and functionality behind Questaal, an open-source suite of codes for calculating the electronic structure and related properties of materials from first principles. The formalism of the linearised muffin-tin orbital ( LMTO) method is revisited in detail and developed further by the introduction of short-ranged tight-binding basis functions for full-potential calculations. The LMTO method is presented in both Greens function and wave function formulations for bulk and layered systems. The suites full-potential LMTO code uses a sophisticated basis and augmentation method that allows an efficient and precise solution to the band problem at different levels of theory, most importantly density functional theory, LDA+U, quasi-particle self-consistent GW and combinations of these with dynamical mean field theory. This paper details the technical and theoretical bases of these methods, their implementation in Questaal, and provides an overview of the codes design and capabilities.
160 - A.V. Nikolaev , D. Lamoen , 2015
In order to increase the accuracy of the linearized augmented plane wave method (LAPW) we present a new approach where the plane wave basis function is augmented by two different atomic radial components constructed at two different linearization ene rgies corresponding to two different electron bands (or energy windows). We demonstrate that this case can be reduced to the standard treatment within the LAPW paradigm where the usual basis set is enriched by the basis functions of the tight binding type, which go to zero with zero derivative at the sphere boundary. We show that the task is closely related with the problem of extended core states which is currently solved by applying the LAPW method with local orbitals (LAPW+LO). In comparison with LAPW+LO, the number of supplemented basis functions in our approach is doubled, which opens up a new channel for the extension of the LAPW and LAPW+LO basis sets. The appearance of new supplemented basis functions absent in the LAPW+LO treatment is closely related with the existence of the $dot{u}_l-$component in the canonical LAPW method. We discuss properties of additional tight binding basis functions and apply the extended basis set for computation of electron energy bands of lanthanum (face and body centered structures) and hexagonal close packed lattice of cadmium. We demonstrate that the new treatment gives lower total energies in comparison with both canonical LAPW and LAPW+LO, with the energy difference more pronounced for intermediate and poor LAPW basis sets.
We present the formalism and demonstrate the use of the overlapping muffin-tin approximation (OMTA). This fits a full potential to a superposition of spherically symmetric short-ranged potential wells plus a constant. For one-electron potentials of t his form, the standard multiple-scattering methods can solve Schr{o}dingers equation correctly to 1st order in the potential overlap. Choosing an augmented-plane-wave method as the source of the full potential, we illustrate the procedure for diamond-structured Si. First, we compare the potential in the Si-centered OMTA with the full potential, and then compare the corresponding OMTA $N$-th order muffin-tin orbital and full-potential LAPW band structures. We find that the two latter agree qualitatively for a wide range of overlaps and that the valence bands have an rms deviation of 20 meV/electron for 30% radial overlap. Smaller overlaps give worse potentials and larger overlaps give larger 2nd-order errors of the multiple-scattering method. To further remove the mean error of the bands for small overlaps is simple.
We present a formulation of the so-called Fermi sea contribution to the conductivity tensor of spin-polarized random alloys within the fully relativistic tight-binding linear muffin-tin-orbital (TB-LMTO) method and the coherent potential approximatio n (CPA). We show that the configuration averaging of this contribution leads to the CPA-vertex corrections that are solely due to the energy dependence of the average single-particle propagators. Moreover, we prove that this contribution is indispensable for the invariance of the anomalous Hall conductivities with respect to the particular LMTO representation used in numerical implementation. Ab initio calculations for cubic ferromagnetic 3d transition metals (Fe, Co, Ni) and their random binary alloys (Ni-Fe, Fe-Si) indicate that the Fermi sea term is small against the dominating Fermi surface term. However, for more complicated structures and systems, such as hexagonal cobalt and selected ordered and disordered Co-based Heusler alloys, the Fermi sea term plays a significant role in the quantitative theory of the anomalous Hall effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا