ﻻ يوجد ملخص باللغة العربية
We present the formalism and demonstrate the use of the overlapping muffin-tin approximation (OMTA). This fits a full potential to a superposition of spherically symmetric short-ranged potential wells plus a constant. For one-electron potentials of this form, the standard multiple-scattering methods can solve Schr{o}dingers equation correctly to 1st order in the potential overlap. Choosing an augmented-plane-wave method as the source of the full potential, we illustrate the procedure for diamond-structured Si. First, we compare the potential in the Si-centered OMTA with the full potential, and then compare the corresponding OMTA $N$-th order muffin-tin orbital and full-potential LAPW band structures. We find that the two latter agree qualitatively for a wide range of overlaps and that the valence bands have an rms deviation of 20 meV/electron for 30% radial overlap. Smaller overlaps give worse potentials and larger overlaps give larger 2nd-order errors of the multiple-scattering method. To further remove the mean error of the bands for small overlaps is simple.
We present a self-consistent electronic structure calculation method based on the {it Exact Muffin-Tin Orbitals} (EMTO) Theory developed by O. K. Andersen, O. Jepsen and G. Krier (in {it Lectures on Methods of Electronic Structure Calculations}, Ed.
The most popular electronic structure method, the linear muffin-tin orbital method (LMTO), in its full-potential (FP) and relativistic forms has been extended to calculate the spectroscopic properties of materials form first principles, i.e, optical
By the example of sp^3-bonded semiconductors, we illustrate what 3rd-generation muffin-tin orbitals (MTOs) are. We demonstrate that they can be downfolded to smaller and smaller basis sets: sp^3d^10,sp^3, and bond orbitals. For isolated bands, it is
This paper summarises the theory and functionality behind Questaal, an open-source suite of codes for calculating the electronic structure and related properties of materials from first principles. The formalism of the linearised muffin-tin orbital (
We present a formulation of the so-called Fermi sea contribution to the conductivity tensor of spin-polarized random alloys within the fully relativistic tight-binding linear muffin-tin-orbital (TB-LMTO) method and the coherent potential approximatio