ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of integrated optics components for the second generation of VLTI instruments

103   0   0.0 ( 0 )
 نشر من قبل Sylvestre Lacour
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two of the three instruments proposed to ESO for the second generation instrumentation of the VLTI would use integrated optics for beam combination. Several design are studied, including co-axial and multi-axial recombination. An extensive quantity of combiners are therefore under test in our laboratories. We will present the various components, and the method used to validate and compare the different combiners. Finally, we will discuss the performances and their implication for both VSI and Gravity VLTI instruments.



قيم البحث

اقرأ أيضاً

176 - M.Benisty , J-P.Berger , L.Jocou 2009
The very recent years have seen a promising start in scientific publications making use of images produced by near-infrared long-baseline interferometry. The technique has reached, at last, a technical maturity level that opens new avenues for numero us astrophysical topics requiring milli-arcsecond model-independent imaging. The Very Large Telescope Interferometer (VLTI) is on the path to be equipped with instruments capable to combine between four to six telescopes. In the framework of the VLTI second generation instruments Gravity and VSI, we propose a new beam combining concept using Integrated Optics (IO) technologies with a novel ABCD-like fringe encoding scheme. Our goal is to demonstrate that IO-based combination brings considerable advantages in terms of instrumental design and performance. We therefore aim at giving a full characterization of an IO beam combiner to establish its performances and check its compliance with the specifications of an imaging instrument. Laboratory measurements were made in the H band with a dedicated testbed. We studied the beam combiners through the analysis of throughput, instrumental visibilities, phases and closure phases in wide band as well as with spectral dispersion. Study of the polarization properties is also done. We obtain competitive throughput, high and stable instrumental contrasts, stable but non-zero closure phases which we attribute to internal well calibrable optical path differences. We validate a new static and achromatic phase shifting IO function close to the nominal 90deg value. All these observables show limited chromaticity over the H band range. Our results demonstrate that such ABCD-like beam combiners are particularly well suited to achieve aperture synthesis imaging. This opens the way to extend to all near infrared wavelengths and in particular, the K band.
In a few years, the second generation instruments of the Very Large Telescope Interferometer (VLTI) will routinely provide observations with 4 to 6 telescopes simultaneously. To reach their ultimate performance, they will need a fringe sensor capable to measure in real time the randomly varying optical paths differences. A collaboration between LAOG (PI institute), IAGL, OCA and GIPSA-Lab has proposed the Planar Optics Phase Sensor concept to ESO for the 2nd Generation Fringe Tracker. This concept is based on the integrated optics technologies, enabling the conception of extremely compact interferometric instruments naturally providing single-mode spatial filtering. It allows operations with 4 and 6 telescopes by measuring the fringes position thanks to a spectrally dispersed ABCD method. We present here the main analysis which led to the current concept as well as the expected on-sky performance and the proposed design.
We present the optical and cryo-mechanical solutions for the Spectrograph of VSI (VLTI Spectro-Imager), the second generation near-infrared (J, H and K bands) interferometric instrument for the VLTI. The peculiarity of this spectrograph is represente d by the Integrated Optics (IO) beam-combiner, a small and delicate component which is located inside the cryostat and makes VSI capable to coherently combine 4, 6 or even 8 telescopes. The optics have been specifically designed to match the IO combiner output with the IR detector still preserving the needed spatial and spectral sampling, as well as the required fringe spacing. A compact device that allows us to interchange spectral resolutions (from R=200 to R=12000), is also presented.
We report second harmonic generation from a titanium indiffused lithium niobate waveguide resonator device whose cavity length is locked to the fundamental pump laser using an on-chip phase modulator. The device remains locked for more than 5 minutes , producing more than 80% of the initial second harmonic power. The stability of the system is seen to be limited by DC-drift, a known effect in many lithium niobate systems that include deposited electrodes. The presented device explores the suitability of waveguide resonators in this platform for use in larger integrated networks.
Among certification techniques, those based on the violation of Bell inequalities are appealing because they do not require assumptions on the underlying Hilbert space dimension and on the accuracy of calibration methods. Such device-independent tech niques have been proposed to certify the quality of entangled states, unitary operations, projective measurements following von Neumanns model and rank-one positive-operator-valued measures (POVM). Here, we show that they can be extended to the characterization of quantum instruments with post-measurement states that are not fully determined by the Kraus operators but also depend on input states. We provide concrete certification recipes that are robust to noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا