ﻻ يوجد ملخص باللغة العربية
We develop, test and compare new numerical and geometrical methods for improving the accuracy of extracting waveforms using characteristic evolution. The new numerical method involves use of circular boundaries to the stereographic grid patches which cover the spherical cross-sections of the outgoing null cones. We show how an angular version of numerical dissipation can be introduced into the characteristic code to damp the high frequency error arising form the irregular way the circular patch boundary cuts through the grid. The new geometric method involves use of the Weyl tensor component $Psi_4$ to extract the waveform as opposed to the original approach via the Bondi news function. We develop the necessary analytic and computational formula to compute the $O(1/r)$ radiative part of $Psi_4$ in terms of a conformally compactified treatment of null infinity. These methods are compared and calibrated in test problems based upon linearized waves.
We develop and calibrate a characteristic waveform extraction tool whose major improvements and corrections of pri
We present a detailed methodology for extracting the full set of Newman-Penrose Weyl scalars from numerically generated spacetimes without requiring a tetrad that is completely orthonormal or perfectly aligned to the principal null directions. We als
The accurate modeling of gravitational radiation is a key issue for gravitational wave astronomy. As simulation codes reach higher accuracy, systematic errors inherent in current numerical relativity wave-extraction methods become evident, and may le
We present several improvements to the Cauchy-characteristic evolution procedure that generates high-fidelity gravitational waveforms at $mathcal{I}^+$ from numerical relativity simulations. Cauchy-characteristic evolution combines an interior soluti
We extract gravitational waveforms from numerical simulations of black hole binaries computed using the Spectral Einstein Code. We compare two extraction methods: direct construction of the Newman-Penrose (NP) scalar $Psi_4$ at a finite distance from