ﻻ يوجد ملخص باللغة العربية
We present several improvements to the Cauchy-characteristic evolution procedure that generates high-fidelity gravitational waveforms at $mathcal{I}^+$ from numerical relativity simulations. Cauchy-characteristic evolution combines an interior solution of the Einstein field equations based on Cauchy slices with an exterior solution based on null slices that extend to $mathcal{I}^+$. The foundation of our improved algorithm is a comprehensive method of handling the gauge transformations between the arbitrarily specified coordinates of the interior Cauchy evolution and the unique (up to BMS transformations) Bondi-Sachs coordinate system of the exterior characteristic evolution. We present a reformulated set of characteristic evolution equations better adapted to numerical implementation. In addition, we develop a method to ensure that the angular coordinates used in the volume during the characteristic evolution are asymptotically inertial. This provides a direct route to an expanded set of waveform outputs and is guaranteed to avoid pure-gauge logarithmic dependence that has caused trouble for previous spectral implementations of the characteristic evolution equations. We construct a set of Weyl scalars compatible with the Bondi-like coordinate systems used in characteristic evolution, and determine simple, easily implemented forms for the asymptotic Weyl scalars in our suggested set of coordinates.
From Einsteins theory we know that besides the electromagnetic spectrum, objects like quasars, active galactic nuclei, pulsars and black holes also generate a physical signal of purely gravitational nature. The actual form of the signal is impossible
The accurate modeling of gravitational radiation is a key issue for gravitational wave astronomy. As simulation codes reach higher accuracy, systematic errors inherent in current numerical relativity wave-extraction methods become evident, and may le
The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinat
Understanding the Bondi-Metzner-Sachs (BMS) frame of the gravitational waves produced by numerical relativity is crucial for ensuring that analyses on such waveforms are performed properly. It is also important that models are built from waveforms in
Gravitational waves (GW) from coalescing stellar-mass black hole binaries (BBH) are expected to be detected by the Advanced Laser Interferometer Gravitational-wave Observatory and Advanced Virgo. Detection searches operate by matched-filtering the de