ﻻ يوجد ملخص باللغة العربية
RoboNet-II uses a global network of robotic telescopes to perform follow-up observations of microlensing events in the Galactic Bulge. The current network consists of three 2m telescopes located in Hawaii and Australia (owned by Las Cumbres Observatory) and the Canary Islands (owned by Liverpool John Moores University). In future years the network will be expanded by deploying clusters of 1m telescopes in other suitable locations. A principal scientific aim of the RoboNet-II project is the detection of cool extra-solar planets by the method of gravitational microlensing. These detections will provide crucial constraints to models of planetary formation and orbital migration. RoboNet-II acts in coordination with the PLANET microlensing follow-up network and uses an optimization algorithm (web-PLOP) to select the targets and a distributed scheduling paradigm (eSTAR) to execute the observations. Continuous automated assessment of the observations and anomaly detection is provided by the ARTEMiS system.
We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors
Erroneous submission in violation of copyright, removed by arXiv admin.
The physical and chemical properties of prestellar cores, especially massive ones, are still far from being well understood due to the lack of a large sample. The low dust temperature ($<$14 K) of Planck cold clumps makes them promising candidates fo
The Next Generation Transit Survey (NGTS) is a photometric survey for transiting exoplanets, consisting of twelve identical 0.2-m telescopes. We report a measurement of the transit of HD106315c using a novel observing mode in which multiple NGTS tele
We present here, follow-up observations of four Binary black hole BBH events performed with the High Energy Stereoscopic System (H.E.S.S.) in the Very High Energy (VHE) gamma-ray domain during the second and third LIGO/Virgo observation runs. Detaile