ﻻ يوجد ملخص باللغة العربية
A period of slow contraction with equation of state w > 1, known as an ekpyrotic phase, has been shown to flatten and smooth the universe if it begins the phase with small perturbations. In this paper, we explore how robust and powerful the ekpyrotic smoothing mechanism is by beginning with highly inhomogeneous and anisotropic initial conditions and numerically solving for the subsequent evolution of the universe. Our studies, based on a universe with gravity plus a scalar field with a negative exponential potential, show that some regions become homogeneous and isotropic while others exhibit inhomogeneous and anisotropic behavior in which the scalar field behaves like a fluid with w=1. We find that the ekpyrotic smoothing mechanism is robust in the sense that the ratio of the proper volume of the smooth to non-smooth region grows exponentially fast along time slices of constant mean curvature.
We consider the four-dimensional effective field theory which has been used in previous studies of perturbations in the Ekpyrotic Universe, and discuss the spectrum of cosmological fluctuations induced on large scales by quantum fluctuations of the b
We assume that the early universe is homogeneous, anisotropic, and is dominated by the mutually BPS 2255 intersecting branes of M theory. The spatial directions are all taken to be toroidal. Using analytical and numerical methods, we study the evolut
In Pre-Big-Bang and in Ekpyrotic Cosmology, perturbations on cosmological scales today are generated from quantum vacuum fluctuations during a phase when the Universe is contracting (viewed in the Einstein frame). The backgrounds studied to date do n
The Ekpyrotic scenario assumes that our visible Universe is a boundary brane in a five-dimensional bulk and that the hot Big Bang occurs when a nearly supersymmetric five-brane travelling along the fifth dimension collides with our visible brane. We
In a recent paper arXiv:0910.2230, Khoury and Steinhardt proposed a way to generate adiabatic cosmological perturbations with a nearly flat spectrum in a contracting Universe. To produce these perturbations they used a regime in which the equation of