ﻻ يوجد ملخص باللغة العربية
The magnetic and transport behaviors of cerium substituted iron oxy-arsenide superconductor with x = 0.1 to 0.4 fluoride (F) doping have been investigated in this report. Temperature dependent susceptibility and resistivity measurements showed the 0.1 F-doped sample (CeFeAsO0.9F0.1) has a superconducting transition temperature (Tc) of around 30 K. With increasing doping beyond x = 0.2 Tc saturates to around 40 K. Temperature dependent susceptibility measured in different magnetic fields for the under-doped sample showed Meissner effect in low field and the diamagnetism is still visible up to 1 Tesla, with an obvious magnetic transition below 5 K, perhaps originating from magnetic ordering of the rare earth cerium. The corresponding field dependent resistance versus temperature measurements indicated a broadening of less than 3 K for Tc at mid-point by increasing the field to 5 Tesla indicating rather low anisotropy. An estimated upper critical field of more than 48 Tesla and accordingly an estimated maximum coherence length of 2.6 nm were obtained confirming the high upper critical field with a short coherence length for this superconductor.
We have studied the structural and electronic phase diagrams of CeFeAsO1-xFx and SmFeAsO1-xFx by a detailed analysis of muon spin relaxation experiments, synchrotron X-ray diffraction, Mossbauer spectroscopy, electrical resistivity, specific heat, an
We use neutron scattering to study the structural and magnetic phase transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a semimetal to a high-transition-temperature (high-Tc) superconductor through Fluorine (F) doping x. In th
We report an extensive study on the intrinsic bulk electronic structure of the high-temperature superconductor CeFeAsO0.89F0.11 and its parent compound CeFeAsO by soft and hard x-ray photoemission, x-ray absorption and soft-x-ray emission spectroscop
The carrier transport and the motion of a vortex system in a mixed state of an electron-doped high-temperature superconductors Nd2-xCexCuO4 were investigated. To study the anisotropy of galvanomagnetic effects of highly layered NdCeCuO system we have
High-temperature (high-Tc) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconduct