ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic Structure of CeFeAsO1-xFx (x=0, 0.11/x=0.12) compounds

774   0   0.0 ( 0 )
 نشر من قبل Norman Mannella
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report an extensive study on the intrinsic bulk electronic structure of the high-temperature superconductor CeFeAsO0.89F0.11 and its parent compound CeFeAsO by soft and hard x-ray photoemission, x-ray absorption and soft-x-ray emission spectroscopies. The complementary surface/bulk probing depth, and the elemental and chemical sensitivity of these techniques allows resolving the intrinsic electronic structure of each element and correlating it with the local structure, which has been probed by extended-x-ray absorption fine structure spectroscopy. The measurements indicate a predominant 4f1 (i.e. Ce3+) initial state configuration for Cerium and an effective valence-band-to-4f charge-transfer screening of the core hole. The spectra also reveal the presence of a small Ce f0 initial state configuration, which we assign to the occurrence of an intermediate valence state. The data reveal a reasonably good agreement with the partial density of states as obtained in standard density functional calculations over a large energy range. Implications for the electronic structure of these materials are discussed.



قيم البحث

اقرأ أيضاً

We have studied the structural and electronic phase diagrams of CeFeAsO1-xFx and SmFeAsO1-xFx by a detailed analysis of muon spin relaxation experiments, synchrotron X-ray diffraction, Mossbauer spectroscopy, electrical resistivity, specific heat, an d magnetic susceptibility measurements (Full abstract in the main document).
167 - Y. Xiao , Y. Su , R. Mittal 2008
A Neutron Powder Diffraction (NPD) experiment has been performed to investigate the structural phase transition and magnetic order in CaFe1-xCoxAsF superconductor compounds (x = 0, 0.06, 0.12). The parent compound CaFeAsF undergoes a tetragonal to or thorhombic phase transition at 134(3) K, while the magnetic order in form of a spin-density wave (SDW) sets in at 114(3) K. The antiferromagnetic structure of the parent compound has been determined with a unique propagation vector k = (1,0,1) and the Fe saturation moment of 0.49(5)uB aligned along the long a-axis. With increasing Co doping, the long range antiferromagnetic order has been observed to coexist with superconductivity in the orthorhombic phase of the underdoped CaFe0.94Co0.06AsF with a reduced Fe moment (0.15(5)uB). Magnetic order is completely suppressed in optimally doped CaFe0.88Co0.12AsF. We argue that the coexistence of SDW and superconductivity might be related to mesoscopic phase separation.
115 - W. Lu , J. Yang , X.L. Dong 2008
Diamagnetic susceptibility measurements under high hydrostatic pressure (up to 1.03 GPa) were carried out on the newly discovered Fe-based superconductor LaO_{1-x}F_{x}FeAs(x=0.11). The transition temperature T_c, defined as the point at the maximum slope of superconducting transition, was enhanced almost linearly by hydrostatic pressure, yielding a dT_c/dP of about 1.2 K/GPa. Differential diamagnetic susceptibility curves indicate that the underlying superconducting state is complicated. It is suggested that pressure plays an important role on pushing low T_c superconducting phase toward the main (optimal) superconducting phase.
We use neutron scattering to study the structural and magnetic phase transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a semimetal to a high-transition-temperature (high-Tc) superconductor through Fluorine (F) doping x. In th e undoped state, CeFeAsO develops a structural lattice distortion followed by a stripe like commensurate antiferromagnetic order with decreasing temperature. With increasing Fluorine doping, the structural phase transition decreases gradually while the antiferromagnetic order is suppressed before the appearance of superconductivity, resulting an electronic phase diagram remarkably similar to that of the high-Tc copper oxides. Comparison of the structural evolution of CeFeAsO1-xFx with other Fe-based superconductors reveals that the effective electronic band width decreases systematically for materials with higher Tc. The results suggest that electron correlation effects are important for the mechanism of high-Tc superconductivity in these Fe pnictides.
We present a volume-sensitive high-energy x-ray diffraction study of the underdoped cuprate high temperature superconductor La2-xSrxCuO4 (x = 0.12, Tc=27 K) in applied magnetic field. Bulk short-range charge stripe order with propagation vector q_ch = (0.231, 0, 0.5) is demonstrated to exist below T_ch = 85(10) K and shown to compete with superconductivity. We argue that bulk charge ordering arises from fluctuating stripes that become pinned near boundaries between orthorhombic twin domains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا