ﻻ يوجد ملخص باللغة العربية
We study the properties of surface solitons generated at the edge of a semi-infinite photonic lattice in nonlinear quadratic media, namely two-color surface lattice solitons. We analyze the impact of phase mismatch on existence and stability of surface modes, and find novel classes of two-color twisted surface solitons which are stable in a large domain of their existence.
We report on the experimental observation of corner surface solitons localized at the edges joining planar interfaces of hexagonal waveguide array with uniform nonlinear medium. The face angle between these interfaces has a strong impact on the thres
We observe experimentally two-dimensional solitons in superlattices comprising alternating deep and shallow waveguides fabricated via the femtosecond laser direct writing technique. We find that the symmetry of linear diffraction patterns as well as
We report the observation of surface solitons in chirped semi-infinite waveguide arrays whose waveguides exhibit exponentially decreasing refractive indices. We show that the power threshold for surface wave formation decreases with an increase of th
We consider a two-dimensional nonlinear waveguide with distributed gain and losses. The optical potential describing the system consists of an unperturbed complex potential depending only on one transverse coordinate, i.e., corresponding to a planar
We address the properties of two-dimensional surface solitons supported by the interface of a waveguide array whose nonlinearity is periodically modulated. When the nonlinearity strength reaches its minima at the points where the linear refractive in