ﻻ يوجد ملخص باللغة العربية
We address the properties of two-dimensional surface solitons supported by the interface of a waveguide array whose nonlinearity is periodically modulated. When the nonlinearity strength reaches its minima at the points where the linear refractive index attains its maxima, we found that nonlinear surface waves exist and can be made stable only within a limited band of input energy flows, and for lattice depths exceeding a lower threshold.
We report the observation of surface solitons in chirped semi-infinite waveguide arrays whose waveguides exhibit exponentially decreasing refractive indices. We show that the power threshold for surface wave formation decreases with an increase of th
We report on the experimental observation of corner surface solitons localized at the edges joining planar interfaces of hexagonal waveguide array with uniform nonlinear medium. The face angle between these interfaces has a strong impact on the thres
We study the influences to the discrete soliton (DS) by introducing linearly long-range nonlocal interactions, which give rise to the off-diagonal elements of the linearly coupled matrix in the discrete nonlinear schrodinger equation to be filled by
We study the properties of surface solitons generated at the edge of a semi-infinite photonic lattice in nonlinear quadratic media, namely two-color surface lattice solitons. We analyze the impact of phase mismatch on existence and stability of surfa
Formation of bright envelope solitons from wave packets with a repulsive nonlinearity was observed for the first time. The experiments used surface spin-wave packets in magnetic yttrium iron garnet (YIG) thin film strips. When the wave packets are na