ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport anomalies across the quantum limit in semimetallic Bi$_{0.96}$Sb$_{0.04}$

258   0   0.0 ( 0 )
 نشر من قبل Kamran Behnia
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a study of electronic transport in semi-metallic Bi$_{0.96}$Sb$_{0.04}$. At zero field, the system is a very dilute Fermi liquid displaying a T$^{2}$ resistivity with an enhanced prefactor. Quantum oscillations in resistivity as well as in Hall, Nernst and Seebeck responses of the system are detectable and their period quantifies the shrinking of the Fermi surface with antimony doping. For a field along the trigonal axis, the quantum limit was found to occur at a field as low as 3T. An ultraquantum anomaly at twice this field was detected in both charge transport and Nernst response. Its origin appears to lie beyond the one-particle picture and linked to unidentified many-body effects.



قيم البحث

اقرأ أيضاً

Results of dc magnetization study are presented showing interesting thermomagnetic history effects across the antiferromagnetic to ferromagnetic transition in Ce(Fe$_{0.96}$Al$_{0.04})_2$. Specifically, we observe (i)ZFC/FC irreversibility rising wit h increasing field; (ii) virgin curve lying outside the envelope M-H curve. We argue that these effects are quite different from the characteristics seen in spin-glasses or in hard ferromagnets; they can be understood as metastabilities associated with a first order magnetic phase transition.
Taking the pseudobinary C15 Laves phase compound Ce(Fe$_{0.96}$Al$_{0.04}$)$_2$ as a paradigm for studying a ferromagnetic to antiferromagnetic phase transition, we present interesting thermomagnetic history effects in magnetotransport as well as mag netisation measurements across this phase transition. A comparison is made with history effects observed across the ferromagnetic to antiferromagnetic transition in R$_{0.5}$Sr$_{0.5}$MnO$_3$ crystals.
Narrow-gap higher mobility semiconducting alloys In_{1-x}Mn_{x}Sb were synthesized in polycrystalline form and their magnetic and transport properties have been investigated. Ferromagnetic response in In_{0.98}Mn_{0.02}Sb was detected by the observat ion of clear hysteresis loops up to room temperature in direct magnetization measurements. An unconventional (reentrant) magnetization versus temperature behavior has been found. We explained the observed peculiarities within the frameworks of recent models which suggest that a strong temperature dependence of the carrier density is a crucial parameter determining carrier-mediated ferromagnetism of (III,Mn)V semiconductors. The correlation between magnetic states and transport properties of the sample has been discussed. The contact spectroscopy method is used to investigate a band structure of (InMn)Sb near the Fermi level. Measurements of the degree of charge current spin polarization have been carried out using the point contact Andreev reflection (AR) spectroscopy. The AR data are analyzed by introducing a quasiparticle spectrum broadening, which is likely to be related to magnetic scattering in the contact. The AR spectroscopy data argued that at low temperature the sample is decomposed on metallic ferromagnetic clusters with relatively high spin polarization of charge carriers (up to 65% at 4.2K) within a cluster.
Quantum materials (QMs) with strong correlation and non-trivial topology are indispensable to next-generation information and computing technologies. Exploitation of topological band structure is an ideal starting point to realize correlated topologi cal QMs. Herein, we report that strain-induced symmetry modification in correlated oxide SrNbO3 thin films creates an emerging topological band structure. Dirac electrons in strained SrNbO3 films reveal ultra-high mobility (100,000 cm2/Vs), exceptionally small effective mass (0.04me), and non-zero Berry phase. More importantly, strained SrNbO3 films reach the extreme quantum limit, exhibiting a sign of fractional occupation of Landau levels and giant mass enhancement. Our results suggest that symmetry-modified SrNbO3 is a rare example of a correlated topological QM, in which strong correlation of Dirac electrons leads to the realization of fractional occupation of Landau levels.
We have demonstrated the effect of hydrostatic pressure on magnetic and transport properties, and thermal transport properties in electron-doped manganites CaMn$_{1-x}$Sb$_{x}$O$_{3}$. The substitution of Sb$^{5+}$ ion for Mn $^{4+}$site of the paren t matrix causes one-electron doping with the chemical formula CaMn$^{4+}_{1-2x}$Mn$^{3+}_{x}$Sb$^{5+}_{x}$O$_{3}$ accompanied by a monotonous increase in unit cell volume as a function of $x$. Upon increasing the doping level of Sb, the magnitudes of both electrical resistivity and negative Seebeck coefficient are suppressed at high temperatures, indicating the electron doping. Anomalous diamagnetic behaviors at $x=0.05$ and 0.08 are clearly observed in field cooled dc magnetization. The effect of hydrostatic pressure on dc magnetization is in contrast to the chemical pressure effect due to Sb doping. The dynamical effect of ac magnetic susceptibility measurement points to the formation of the magnetically frustrated clusters such as FM clusters embedded in canted AFM matrix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا